{"title":"Multinuclear Tin-Based Macrocyclic Organometallic Resist for EUV Photolithography","authors":"Gayoung Lim, Kangsik Lee, Chawon Koh, Tsunehiro Nishi and Hyo Jae Yoon*, ","doi":"10.1021/acsmaterialsau.4c0001010.1021/acsmaterialsau.4c00010","DOIUrl":null,"url":null,"abstract":"<p >We report a new photoresist based on a multinuclear tin-based macrocyclic complex and its performance for extreme UV (EUV) photolithography. The new photoresist has a trinuclear macrocyclic structure containing three salicylhydroxamic acid ligands and six Sn–CH<sub>3</sub> bonds, which was confirmed by multinuclear nuclear magnetic resonance (NMR) and FT-IR spectroscopies and single-crystal X-ray diffraction study. The resist exhibited good humidity, air, and thermal stabilities, while showing good photochemical reactivity. Photochemical cross-linking of the resist was confirmed by X-ray photoelectron and solid-state NMR spectroscopic analyses. EUV photolithography with the 44 nm-thick film on a silicon wafer revealed a line-edge-roughness (LER) of 1.1 nm in a 20 nm half-pitch pattern. The <i>Z</i>-factor, a metric that gauges the performance of photoresists by considering the tradeoff between resolution, LER, and sensitivity (RLS), was estimated to be 1.28 × 10<sup>–8</sup> mJ·nm<sup>3</sup>, indicating its great performance compared to the EUV photoresists reported in the literature.</p>","PeriodicalId":29798,"journal":{"name":"ACS Materials Au","volume":"4 5","pages":"468–478 468–478"},"PeriodicalIF":5.7000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmaterialsau.4c00010","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialsau.4c00010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We report a new photoresist based on a multinuclear tin-based macrocyclic complex and its performance for extreme UV (EUV) photolithography. The new photoresist has a trinuclear macrocyclic structure containing three salicylhydroxamic acid ligands and six Sn–CH3 bonds, which was confirmed by multinuclear nuclear magnetic resonance (NMR) and FT-IR spectroscopies and single-crystal X-ray diffraction study. The resist exhibited good humidity, air, and thermal stabilities, while showing good photochemical reactivity. Photochemical cross-linking of the resist was confirmed by X-ray photoelectron and solid-state NMR spectroscopic analyses. EUV photolithography with the 44 nm-thick film on a silicon wafer revealed a line-edge-roughness (LER) of 1.1 nm in a 20 nm half-pitch pattern. The Z-factor, a metric that gauges the performance of photoresists by considering the tradeoff between resolution, LER, and sensitivity (RLS), was estimated to be 1.28 × 10–8 mJ·nm3, indicating its great performance compared to the EUV photoresists reported in the literature.
期刊介绍:
ACS Materials Au is an open access journal publishing letters articles reviews and perspectives describing high-quality research at the forefront of fundamental and applied research and at the interface between materials and other disciplines such as chemistry engineering and biology. Papers that showcase multidisciplinary and innovative materials research addressing global challenges are especially welcome. Areas of interest include but are not limited to:Design synthesis characterization and evaluation of forefront and emerging materialsUnderstanding structure property performance relationships and their underlying mechanismsDevelopment of materials for energy environmental biomedical electronic and catalytic applications