Fopei Ma, Zhuang Li, Haihua Liu, Shixian Chen, Songyuan Zheng, Junqing Zhu, Hao Shi, Haixin Ye, Zhantu Qiu, Lei Gao, Bingqi Han, Qian Yang, Xing Wang, Yang Zhang, Lifang Cheng, Huijie Fan, Shuaijun Lv, Xiaoshan Zhao, Hongwei Zhou, Juan Li, Mukeng Hong
{"title":"Dietary-timing-induced gut microbiota diurnal oscillations modulate inflammatory rhythms in rheumatoid arthritis","authors":"Fopei Ma, Zhuang Li, Haihua Liu, Shixian Chen, Songyuan Zheng, Junqing Zhu, Hao Shi, Haixin Ye, Zhantu Qiu, Lei Gao, Bingqi Han, Qian Yang, Xing Wang, Yang Zhang, Lifang Cheng, Huijie Fan, Shuaijun Lv, Xiaoshan Zhao, Hongwei Zhou, Juan Li, Mukeng Hong","doi":"10.1016/j.cmet.2024.08.007","DOIUrl":null,"url":null,"abstract":"<p>Rheumatoid arthritis (RA) is a chronic autoimmune condition characterized by inflammatory activity with distinct rhythmic fluctuations. However, the precise mechanisms governing these inflammatory rhythms remain elusive. Here, we explore the interaction between dietary patterns, gut microbiota diurnal oscillations, and the rhythmicity of RA in both collagen-induced arthritis (CIA) mice and patients with RA and highlight the significance of dietary timing in modulating RA inflammatory rhythms linked to gut microbiota. Specifically, we discovered that <em>Parabacteroides distasonis</em> (<em>P. distasonis</em>) uses β-glucosidase (β-GC) to release glycitein (GLY) from the diet in response to daily nutritional cues, influencing RA inflammatory rhythms dependent on the sirtuin 5-nuclear factor-κB (SIRT5-NF-κB) axis. Notably, we validated the daily fluctuations of <em>P. distasonis-</em>β-GC-GLY in patients with RA through continuous sampling across day-night cycles. These findings underscore the crucial role of dietary timing in RA rhythmicity and propose potential clinical implications for novel therapeutic strategies to alleviate arthritis.</p>","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"1 1","pages":""},"PeriodicalIF":27.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell metabolism","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cmet.2024.08.007","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune condition characterized by inflammatory activity with distinct rhythmic fluctuations. However, the precise mechanisms governing these inflammatory rhythms remain elusive. Here, we explore the interaction between dietary patterns, gut microbiota diurnal oscillations, and the rhythmicity of RA in both collagen-induced arthritis (CIA) mice and patients with RA and highlight the significance of dietary timing in modulating RA inflammatory rhythms linked to gut microbiota. Specifically, we discovered that Parabacteroides distasonis (P. distasonis) uses β-glucosidase (β-GC) to release glycitein (GLY) from the diet in response to daily nutritional cues, influencing RA inflammatory rhythms dependent on the sirtuin 5-nuclear factor-κB (SIRT5-NF-κB) axis. Notably, we validated the daily fluctuations of P. distasonis-β-GC-GLY in patients with RA through continuous sampling across day-night cycles. These findings underscore the crucial role of dietary timing in RA rhythmicity and propose potential clinical implications for novel therapeutic strategies to alleviate arthritis.
类风湿性关节炎(RA)是一种慢性自身免疫性疾病,其特点是炎症活动具有明显的节律性波动。然而,支配这些炎症节律的确切机制仍然难以捉摸。在这里,我们探讨了饮食模式、肠道微生物群昼夜振荡与胶原诱导关节炎(CIA)小鼠和 RA 患者的 RA 节律性之间的相互作用,并强调了饮食时间在调节与肠道微生物群相关的 RA 炎症节律中的重要性。具体而言,我们发现,远端副乳头瘤菌(P. distasonis)利用β-葡萄糖苷酶(β-GC)从饮食中释放亚甘氨酸(GLY)以响应每日营养线索,从而影响依赖于sirtuin 5-核因子-κB(SIRT5-NF-κB)轴的RA炎症节律。值得注意的是,我们通过跨昼夜周期的连续采样,验证了P. distasonis-β-GC-GLY在RA患者中的日波动性。这些发现强调了饮食时间在 RA 节律性中的关键作用,并为缓解关节炎的新型治疗策略提出了潜在的临床意义。
期刊介绍:
Cell Metabolism is a top research journal established in 2005 that focuses on publishing original and impactful papers in the field of metabolic research.It covers a wide range of topics including diabetes, obesity, cardiovascular biology, aging and stress responses, circadian biology, and many others.
Cell Metabolism aims to contribute to the advancement of metabolic research by providing a platform for the publication and dissemination of high-quality research and thought-provoking articles.