Fatema Mehejabin, Afla Musharrat, Shams Forruque Ahmed, Zobaidul Kabir, T. M. Yunus Khan, C. Ahamed Saleel
{"title":"Sustainable Biofuel Production Utilizing Nanotechnology: Challenges and Potential Solutions","authors":"Fatema Mehejabin, Afla Musharrat, Shams Forruque Ahmed, Zobaidul Kabir, T. M. Yunus Khan, C. Ahamed Saleel","doi":"10.1111/gcbb.70001","DOIUrl":null,"url":null,"abstract":"<p>The transition to biofuels as viable alternatives to fossil fuels is increasingly critical, given the rising demand for sustainable energy. However, biofuel production is hindered by challenges such as feedstock scarcity, elevated production costs, and environmental impacts. Nanotechnology has the potential to significantly improve the efficiency and durability of biofuel production processes, thereby overcoming these challenges. Although there has been significant research on using nanomaterials in biofuel production, there needs to be more emphasis on understanding and addressing the difficulties of integrating these materials and developing strategies to overcome them. This review systematically examines the role of nanotechnology in various biofuel production pathways, including biodiesel, biogas, bioethanol, biohydrogen, hydrotreated vegetable oils, and Fischer–Tropsch synthesis. We discuss how nanomaterials improve key aspects of biofuel production, such as catalysis, microbial conversion, biomass pretreatment, and separation. Despite these advancements, nanotechnology has challenges, including nanoparticle toxicity, increased operational costs, and technical limitations. We propose potential solutions to these issues, emphasizing the need for interdisciplinary collaboration and innovative approaches. By effectively integrating nanotechnology into biofuel production, the energy sector can move toward a more sustainable and environmentally friendly future.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"16 10","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.70001","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.70001","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
The transition to biofuels as viable alternatives to fossil fuels is increasingly critical, given the rising demand for sustainable energy. However, biofuel production is hindered by challenges such as feedstock scarcity, elevated production costs, and environmental impacts. Nanotechnology has the potential to significantly improve the efficiency and durability of biofuel production processes, thereby overcoming these challenges. Although there has been significant research on using nanomaterials in biofuel production, there needs to be more emphasis on understanding and addressing the difficulties of integrating these materials and developing strategies to overcome them. This review systematically examines the role of nanotechnology in various biofuel production pathways, including biodiesel, biogas, bioethanol, biohydrogen, hydrotreated vegetable oils, and Fischer–Tropsch synthesis. We discuss how nanomaterials improve key aspects of biofuel production, such as catalysis, microbial conversion, biomass pretreatment, and separation. Despite these advancements, nanotechnology has challenges, including nanoparticle toxicity, increased operational costs, and technical limitations. We propose potential solutions to these issues, emphasizing the need for interdisciplinary collaboration and innovative approaches. By effectively integrating nanotechnology into biofuel production, the energy sector can move toward a more sustainable and environmentally friendly future.
期刊介绍:
GCB Bioenergy is an international journal publishing original research papers, review articles and commentaries that promote understanding of the interface between biological and environmental sciences and the production of fuels directly from plants, algae and waste. The scope of the journal extends to areas outside of biology to policy forum, socioeconomic analyses, technoeconomic analyses and systems analysis. Papers do not need a global change component for consideration for publication, it is viewed as implicit that most bioenergy will be beneficial in avoiding at least a part of the fossil fuel energy that would otherwise be used.
Key areas covered by the journal:
Bioenergy feedstock and bio-oil production: energy crops and algae their management,, genomics, genetic improvements, planting, harvesting, storage, transportation, integrated logistics, production modeling, composition and its modification, pests, diseases and weeds of feedstocks. Manuscripts concerning alternative energy based on biological mimicry are also encouraged (e.g. artificial photosynthesis).
Biological Residues/Co-products: from agricultural production, forestry and plantations (stover, sugar, bio-plastics, etc.), algae processing industries, and municipal sources (MSW).
Bioenergy and the Environment: ecosystem services, carbon mitigation, land use change, life cycle assessment, energy and greenhouse gas balances, water use, water quality, assessment of sustainability, and biodiversity issues.
Bioenergy Socioeconomics: examining the economic viability or social acceptability of crops, crops systems and their processing, including genetically modified organisms [GMOs], health impacts of bioenergy systems.
Bioenergy Policy: legislative developments affecting biofuels and bioenergy.
Bioenergy Systems Analysis: examining biological developments in a whole systems context.