A surface sulfurization strategy for tuning the lithiophilicity of garnet electrolyte pellets towards advanced solid-state lithium metal electrolyte†

IF 5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Genxi Yu, Youchun Wu, Dawei Sha, Jianwen Cai, Gaofa Nie, Yaping Wang, Long Pan and ZhengMing Sun
{"title":"A surface sulfurization strategy for tuning the lithiophilicity of garnet electrolyte pellets towards advanced solid-state lithium metal electrolyte†","authors":"Genxi Yu, Youchun Wu, Dawei Sha, Jianwen Cai, Gaofa Nie, Yaping Wang, Long Pan and ZhengMing Sun","doi":"10.1039/D4SE00784K","DOIUrl":null,"url":null,"abstract":"<p >Garnet solid-state electrolytes (SSEs) have extraordinary application prospects due to their high room temperature ionic conductivity and high stability to lithium metal. However, when exposed to air during the preparation process, contaminants are inevitably generated on the electrolyte surface, resulting in poor wettability of the Li/garnet interface and high interfacial resistance. Moreover, solid-state batteries assembled with contaminated electrolytes can easily lead to the formation and expansion of lithium dendrites. Herein, we demonstrate a surface chemistry strategy of rapid vulcanization treatment to improve interface problems by introducing lithium sulfides into the garnet electrolyte. Compared to the surface contaminants (<em>e.g.</em>, Li<small><sub>2</sub></small>CO<small><sub>3</sub></small>) on garnet, lithium sulfides (<em>e.g.</em>, Li<small><sub>2</sub></small>S) have several advantages; it is a good Li<small><sup>+</sup></small> conductor and has good wettability to both the garnet surface and Li metal anode. The interfacial resistance of the vulcanized garnet-SSE pellets decreased from 2961 Ω cm<small><sup>2</sup></small> for LLZT@LC to 391 Ω cm<small><sup>2</sup></small> for LLZT@LS. In addition, the lithium symmetric battery assembled by using LLZT@LS pellets exhibits stable plating/stripping cycling performance and ultralow overpotential at a current of 0.2 mA cm<small><sup>−2</sup></small> without Li dendrite growth. Moreover, the LiFePO<small><sub>4</sub></small>/Li batteries with LLZT@LS pellets show excellent rate performances and cycling stability (114.3 mA h g<small><sup>−1</sup></small> @ 0.5C after 150 cycles) with a capacity retention of 86%. These results demonstrate that the rapid treatment of garnet contaminants by a surface chemistry strategy is not only a simple and efficient solution but also provides strong support for the realization of high-performance solid-state lithium metal batteries (SSLMBs).</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 18","pages":" 4335-4343"},"PeriodicalIF":5.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/se/d4se00784k","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Garnet solid-state electrolytes (SSEs) have extraordinary application prospects due to their high room temperature ionic conductivity and high stability to lithium metal. However, when exposed to air during the preparation process, contaminants are inevitably generated on the electrolyte surface, resulting in poor wettability of the Li/garnet interface and high interfacial resistance. Moreover, solid-state batteries assembled with contaminated electrolytes can easily lead to the formation and expansion of lithium dendrites. Herein, we demonstrate a surface chemistry strategy of rapid vulcanization treatment to improve interface problems by introducing lithium sulfides into the garnet electrolyte. Compared to the surface contaminants (e.g., Li2CO3) on garnet, lithium sulfides (e.g., Li2S) have several advantages; it is a good Li+ conductor and has good wettability to both the garnet surface and Li metal anode. The interfacial resistance of the vulcanized garnet-SSE pellets decreased from 2961 Ω cm2 for LLZT@LC to 391 Ω cm2 for LLZT@LS. In addition, the lithium symmetric battery assembled by using LLZT@LS pellets exhibits stable plating/stripping cycling performance and ultralow overpotential at a current of 0.2 mA cm−2 without Li dendrite growth. Moreover, the LiFePO4/Li batteries with LLZT@LS pellets show excellent rate performances and cycling stability (114.3 mA h g−1 @ 0.5C after 150 cycles) with a capacity retention of 86%. These results demonstrate that the rapid treatment of garnet contaminants by a surface chemistry strategy is not only a simple and efficient solution but also provides strong support for the realization of high-performance solid-state lithium metal batteries (SSLMBs).

Abstract Image

调整石榴石电解质颗粒亲锂性的表面硫化策略,实现先进的固态锂金属电解质†。
石榴石固态电解质(SSE)具有高室温离子电导率和对锂金属的高稳定性,因此具有非凡的应用前景。然而,在制备过程中暴露于空气中时,电解质表面不可避免地会产生污染物,导致锂/石榴石界面润湿性差和界面电阻高。此外,用受污染的电解质组装固态电池很容易导致锂枝晶的形成和扩展。在此,我们展示了一种快速硫化处理的表面化学策略,通过在石榴石电解液中引入锂硫化物来改善界面问题。与石榴石的表面污染物(如 Li2CO3)相比,锂硫化物(如 Li2S)有几个优点:它是一种良好的 Li+ 导体,对石榴石表面和锂金属阳极都有良好的润湿性。硫化石榴石-SSE 颗粒的界面电阻从 LLZT@LC 的 2961 Ω cm2 降至 LLZT@LS 的 391 Ω cm2。此外,使用 LLZT@LS 颗粒组装的锂对称电池具有稳定的电镀/剥离循环性能,在 0.2 mA cm-2 电流下具有超低的过电位,且无锂枝晶生长。此外,使用 LLZT@LS 颗粒的磷酸铁锂/锂电池显示出优异的速率性能和循环稳定性(150 次循环后,114.3 mA h g-1 @ 0.5C),容量保持率高达 86%。这些结果表明,通过表面化学策略快速处理石榴石污染物不仅是一种简单高效的解决方案,而且还为实现高性能固态锂金属电池(SSLMB)提供了强有力的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信