Inferior Myocardial Infarction Detection From Lead II of ECG: A Gramian Angular Field-Based 2D-CNN Approach

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Asim Yousuf;Rehan Hafiz;Saqib Riaz;Muhammad Farooq;Kashif Riaz;Muhammad Mahboob Ur Rahman
{"title":"Inferior Myocardial Infarction Detection From Lead II of ECG: A Gramian Angular Field-Based 2D-CNN Approach","authors":"Asim Yousuf;Rehan Hafiz;Saqib Riaz;Muhammad Farooq;Kashif Riaz;Muhammad Mahboob Ur Rahman","doi":"10.1109/LSENS.2024.3450176","DOIUrl":null,"url":null,"abstract":"This letter presents a novel method for inferior myocardial infarction (MI) detection using lead II of electrocardiogram (ECG). We evaluate our proposed method on a public dataset, namely, Physikalisch Technische Bundesanstalt (PTB) ECG dataset from PhysioNet. Under our proposed method, we first clean the noisy ECG signals using db4 wavelet, followed by an R-peak detection algorithm to segment the ECG signals into beats. We then translate the ECG timeseries dataset to an equivalent dataset of grayscale images using Gramian angular summation field (GASF) and Gramian angular difference field (GADF) operations. Subsequently, the grayscale images are fed into a custom 2-D convolutional neural network (CNN), which efficiently differentiates between a healthy subject and a subject with MI. Our proposed approach achieves an average classification accuracy of 99.68%, 99.80%, 99.82%, and 99.84% under GASF dataset with noise and baseline wander, GADF dataset with noise and baseline wander, GASF dataset with noise and baseline wander removed, and GADF dataset with noise and baseline wander removed, respectively. Most importantly, this work opens the floor for innovation in wearable devices to measure lead II ECG (e.g., by a smart watch worn on right wrist, along with a smart patch on left leg), in order to do accurate, real-time, and early detection of inferior wall MI.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 10","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10648729/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This letter presents a novel method for inferior myocardial infarction (MI) detection using lead II of electrocardiogram (ECG). We evaluate our proposed method on a public dataset, namely, Physikalisch Technische Bundesanstalt (PTB) ECG dataset from PhysioNet. Under our proposed method, we first clean the noisy ECG signals using db4 wavelet, followed by an R-peak detection algorithm to segment the ECG signals into beats. We then translate the ECG timeseries dataset to an equivalent dataset of grayscale images using Gramian angular summation field (GASF) and Gramian angular difference field (GADF) operations. Subsequently, the grayscale images are fed into a custom 2-D convolutional neural network (CNN), which efficiently differentiates between a healthy subject and a subject with MI. Our proposed approach achieves an average classification accuracy of 99.68%, 99.80%, 99.82%, and 99.84% under GASF dataset with noise and baseline wander, GADF dataset with noise and baseline wander, GASF dataset with noise and baseline wander removed, and GADF dataset with noise and baseline wander removed, respectively. Most importantly, this work opens the floor for innovation in wearable devices to measure lead II ECG (e.g., by a smart watch worn on right wrist, along with a smart patch on left leg), in order to do accurate, real-time, and early detection of inferior wall MI.
从心电图第 II 导联检测下心肌梗死:基于革兰氏角场的 2D-CNN 方法
本文介绍了一种利用心电图(ECG)第 II 导联检测下心肌梗死(MI)的新方法。我们在一个公共数据集上评估了我们提出的方法,该数据集是来自 PhysioNet 的物理技术联邦委员会(PTB)心电图数据集。在我们提出的方法中,我们首先使用 db4 小波对嘈杂的心电信号进行清理,然后使用 R 峰检测算法将心电信号分割成搏动。然后,我们使用格拉米安角和场 (GASF) 和格拉米安角差场 (GADF) 运算将心电图时间序列数据集转换为等效的灰度图像数据集。随后,将灰度图像输入定制的 2-D 卷积神经网络 (CNN),该网络可有效区分健康受试者和心肌梗塞受试者。我们提出的方法在有噪声和基线漂移的 GASF 数据集、有噪声和基线漂移的 GADF 数据集、去除噪声和基线漂移的 GASF 数据集以及去除噪声和基线漂移的 GADF 数据集下的平均分类准确率分别达到了 99.68%、99.80%、99.82% 和 99.84%。最重要的是,这项工作为测量第二导联心电图的可穿戴设备的创新开辟了道路(例如,通过佩戴在右腕上的智能手表和左腿上的智能贴片),以便准确、实时和早期检测下壁心肌梗死。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信