Corrections to “Saturability of the Quantum Cramér-Rao Bound in Multiparameter Quantum Estimation at the Single-Copy Level”

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Hendra I. Nurdin
{"title":"Corrections to “Saturability of the Quantum Cramér-Rao Bound in Multiparameter Quantum Estimation at the Single-Copy Level”","authors":"Hendra I. Nurdin","doi":"10.1109/LCSYS.2024.3451468","DOIUrl":null,"url":null,"abstract":"The corrigendum uses the notation in [1]. As with [2], the work [1] was concerned with saturability of the QCRB for a finite-dimensional rank-deficient density operator $\\rho _{\\theta }$ in the sense that there exists a POVM with a corresponding probability distribution (on the measurement outcomes) with a classical Fisher information matrix that equals the quantum Fisher information (QFI) matrix of $\\rho _{\\theta }$ . It does not address the existence of an unbiased estimator that achieves the lowest mean square estimation error for $C\\theta $ under this POVM for any real row vector C of the same length as $\\theta $ . Reference [1, Th. 2] claims the following necessary and sufficient conditions: 1) $[L_{\\theta _{l},++},L_{\\theta _{m},++}]=0$ for $l,m=1,\\ldots,p$ .2)For each $\\theta $ there exists a unitary $U_{\\theta } \\in \\mathbb {C}^{r_{+} \\times r_{+}}$ such that $U_{\\theta }^{\\dagger }(\\partial _{l} U_{\\theta } - U_{\\theta } V_{\\theta }^{\\dagger } \\partial _{l} V_{\\theta })\\rho _{\\theta,++} + \\rho _{\\theta,++} (\\partial _{l} U_{\\theta } - U_{\\theta } V_{\\theta }^{\\dagger } \\partial _{l} V_{\\theta })^{\\dagger } U_{\\theta }=0$ for $l=1,\\ldots,p$ , where $\\partial _{l} = \\partial /\\partial \\theta _{l}$ , $V_{\\theta } =\\left [{{\\begin{array}{ccc} |\\psi _{1,\\theta } \\rangle & ~ \\ldots & ~ |\\psi _{r_{+},\\theta } \\rangle \\end{array}}}\\right ]$ , and $\\rho _{\\theta,++}$ is represented in the basis $\\mathcal {B}_{+,\\theta }$ . However, an implicit assumption in the proof of [1, Th. 2] that is not valid in general (that $E_{k,00}$ sums to $I_{r_{0}}$ over all k corresponding to null POVM operators) invalidates these conditions for general POVMs. A counterexample to the necessity of Condition 1 can be found for $\\rho _{\\theta }$ belonging to the quantum exponential family of parameterized density operators [3] of the form \\begin{equation*} \\rho _{\\theta } = e^{\\frac {1}{2}\\sum _{j=1}^{p} \\left ({{\\theta _{j} F_{j} + \\omega \\left ({{\\theta }}\\right)I }}\\right)} \\rho _{0} e^{\\frac {1}{2}\\sum _{j=1}^{p} \\left ({{\\theta _{j} F_{j} + \\omega \\left ({{\\theta }}\\right)I }}\\right)},\\end{equation*} with $F_{j}=1,\\ldots,p$ taken to be invertible and mutually commuting observables, $\\rho _{0}$ is some fixed rank-deficient density operator (of the same dimension as the $F_{j}$ ’s), and $\\omega (\\theta)$ is a scalar normalizing factor such that $\\mathrm {tr}(\\rho _{\\theta }) = 1$ . It is easily seen that the SLDs can be chosen to be $L_{\\theta _{j}} = F_{j} + \\partial _{j} \\omega (\\theta) I$ and they are mutually commuting $[L_{\\theta _{j}},L_{\\theta _{k}}]=0$ for all $j,k$ . Thus the QCRB is saturated by a POVM that consists of the common spectral projectors of $\\{L_{\\theta _{j}}\\}_{j=1,\\ldots,p}$ . However, the SLDs will not satisfy Condition 1 in general. It is satisfied, for instance, in the case where $\\rho _{0}$ also commutes with all the SLDs, which is not generic. There is also an error in Condition 2 since there can exist a unitary solution under this condition that does not necessarily correspond to saturation of the QCRB. For example, when $r_{+}=1$ or when $\\rho _{\\theta,++}=(1/r_{+})I_{r_{+}}$ then $U_{\\theta }=I_{r_{+}}$ satisfies Condition 2 (since $V_{\\theta }$ is an isometry, $V_{\\theta }^{\\dagger }V_{\\theta }=I_{r_{+}}$ , and therefore $\\partial _{l} V_{\\theta }^{\\dagger }V_{\\theta }$ is skew-hermitian) without imposing any constraints on $V_{\\theta }$ as would be expected.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10659096/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The corrigendum uses the notation in [1]. As with [2], the work [1] was concerned with saturability of the QCRB for a finite-dimensional rank-deficient density operator $\rho _{\theta }$ in the sense that there exists a POVM with a corresponding probability distribution (on the measurement outcomes) with a classical Fisher information matrix that equals the quantum Fisher information (QFI) matrix of $\rho _{\theta }$ . It does not address the existence of an unbiased estimator that achieves the lowest mean square estimation error for $C\theta $ under this POVM for any real row vector C of the same length as $\theta $ . Reference [1, Th. 2] claims the following necessary and sufficient conditions: 1) $[L_{\theta _{l},++},L_{\theta _{m},++}]=0$ for $l,m=1,\ldots,p$ .2)For each $\theta $ there exists a unitary $U_{\theta } \in \mathbb {C}^{r_{+} \times r_{+}}$ such that $U_{\theta }^{\dagger }(\partial _{l} U_{\theta } - U_{\theta } V_{\theta }^{\dagger } \partial _{l} V_{\theta })\rho _{\theta,++} + \rho _{\theta,++} (\partial _{l} U_{\theta } - U_{\theta } V_{\theta }^{\dagger } \partial _{l} V_{\theta })^{\dagger } U_{\theta }=0$ for $l=1,\ldots,p$ , where $\partial _{l} = \partial /\partial \theta _{l}$ , $V_{\theta } =\left [{{\begin{array}{ccc} |\psi _{1,\theta } \rangle & ~ \ldots & ~ |\psi _{r_{+},\theta } \rangle \end{array}}}\right ]$ , and $\rho _{\theta,++}$ is represented in the basis $\mathcal {B}_{+,\theta }$ . However, an implicit assumption in the proof of [1, Th. 2] that is not valid in general (that $E_{k,00}$ sums to $I_{r_{0}}$ over all k corresponding to null POVM operators) invalidates these conditions for general POVMs. A counterexample to the necessity of Condition 1 can be found for $\rho _{\theta }$ belonging to the quantum exponential family of parameterized density operators [3] of the form \begin{equation*} \rho _{\theta } = e^{\frac {1}{2}\sum _{j=1}^{p} \left ({{\theta _{j} F_{j} + \omega \left ({{\theta }}\right)I }}\right)} \rho _{0} e^{\frac {1}{2}\sum _{j=1}^{p} \left ({{\theta _{j} F_{j} + \omega \left ({{\theta }}\right)I }}\right)},\end{equation*} with $F_{j}=1,\ldots,p$ taken to be invertible and mutually commuting observables, $\rho _{0}$ is some fixed rank-deficient density operator (of the same dimension as the $F_{j}$ ’s), and $\omega (\theta)$ is a scalar normalizing factor such that $\mathrm {tr}(\rho _{\theta }) = 1$ . It is easily seen that the SLDs can be chosen to be $L_{\theta _{j}} = F_{j} + \partial _{j} \omega (\theta) I$ and they are mutually commuting $[L_{\theta _{j}},L_{\theta _{k}}]=0$ for all $j,k$ . Thus the QCRB is saturated by a POVM that consists of the common spectral projectors of $\{L_{\theta _{j}}\}_{j=1,\ldots,p}$ . However, the SLDs will not satisfy Condition 1 in general. It is satisfied, for instance, in the case where $\rho _{0}$ also commutes with all the SLDs, which is not generic. There is also an error in Condition 2 since there can exist a unitary solution under this condition that does not necessarily correspond to saturation of the QCRB. For example, when $r_{+}=1$ or when $\rho _{\theta,++}=(1/r_{+})I_{r_{+}}$ then $U_{\theta }=I_{r_{+}}$ satisfies Condition 2 (since $V_{\theta }$ is an isometry, $V_{\theta }^{\dagger }V_{\theta }=I_{r_{+}}$ , and therefore $\partial _{l} V_{\theta }^{\dagger }V_{\theta }$ is skew-hermitian) without imposing any constraints on $V_{\theta }$ as would be expected.
对 "单拷贝水平多参数量子估计中量子克拉梅尔-拉奥约束的饱和性 "的更正
更正使用了 [1] 中的符号。与 [2] 一样,[1] 的工作关注的是有限维秩缺陷密度算子 $\rho _{\theta }$ 的 QCRB 饱和性,即存在一个 POVM,其相应的概率分布(关于测量结果)的经典费雪信息矩阵等于 $\rho _{\theta }$ 的量子费雪信息(QFI)矩阵。对于任何与 $\theta $ 相同长度的实行向量 C,它并没有解决是否存在一种无偏估计器,可以在此 POVM 下实现最小均方估计误差的 $C\theta $ 。参考文献 [1, Th. 2] 提出了以下必要条件和充分条件:1) $[L_{\theta _{l},++},L_{\theta _{m},++}]=0$ for $l,m=1,\ldots,p$ .2)For each $\theta $ thereists a unitary $U_{\theta }.\in \mathbb {C}^{r_{+} \times r_{+}}$ such that $U_{\theta }^{\dagger }(\partial _{l})U_{{theta }- U_{\theta }V_{{theta }^{\dagger }\Partial _{l}V_{\theta })\rho _{\theta,++} + \rho _{\theta,++} ((部分 _{l}U_{\theta }- U_{{theta }V_{{theta }^{\dagger }\Partial _{l}V_{{theta })^{\dagger }U_{{theta }=0$ for $l=1,\ldots,p$ , 其中 $\partial _{l} = \partial /\partial \theta _{l}$ , $V_{{theta } =\left [{{\begin{array}{ccc}|\psi _{1,\theta }\rangle & ~ \ldots & ~ |\psi _{r_{+},\theta }\$ ,而 $\rho _{\theta,++}$ 是在基础 $\mathcal {B}_{+,\theta }$ 中表示的。 然而,在 [1, Th.2]中的一个隐含假设在一般情况下并不成立(即 $E_{k,00}$ 在对应于空 POVM 算子的所有 k 上求和为 $I_{r_{0}}$),这使得这些条件对一般 POVM 无效。对于属于量子指数族的参数化密度算子[3]的 $\rho _{\theta }$,可以找到条件 1 的必要性的一个反例,其形式为 \begin{equation*}\rho _{\theta } = e^{frac {1}{2}\sum _{j=1}^{p}\left ({{\theta _{j}F_{j}+ \omega \left ({{\theta }}\right)I }}\right)} \rho _{0} e^{frac {1}{2}\sum _{j=1}^{p}\left ({{\theta _{j}F_{j}+ \omega \left ({{\theta }}\right)I }}\right)},\end{equation*} 其中 $F_{j}=1,\ldots,p$ 是可反转且相互换算的观测值、$\rho _{0}$ 是某个固定的秩缺失密度算子(与 $F_{j}$ 的维度相同),$\omega (\theta)$是一个标量归一化因子,使得 $\mathrm {tr}(\rho _{\theta }) = 1$ 。不难看出,可以选择 SLD 为 $L_{\theta _{j}} = F_{j} 。+ \partial _{j}\omega (\theta) I$ 并且对于所有 $j,k$ 而言,它们互为换向 $[L_{\theta _{j}},L_{\theta _{k}}]=0$ 。因此,由 $\{L_{\theta _{j}}\}_{j=1,\ldots,p}$ 的共谱投影组成的 POVM 会使 QCRB 饱和。 然而,SLD 一般不会满足条件 1。例如,在 $\rho _{0}$ 也与所有 SLD 相交的情况下,它就满足条件 1,而这种情况并不通用。条件 2 也存在错误,因为在此条件下可能存在一个单元解,而该单元解并不一定对应于 QCRB 的饱和。例如,当 $r_{+}=1$ 或当 $\rho _{\theta,++}=(1/r_{+})I_{r_{+}}$ 时,$U_{\theta }=I_{r_{+}}$ 满足条件 2(因为 $V_{\theta }$ 是等距的、$V_{\theta }^{\dagger }V_{\theta }=I_{r_{+}}$ ,因此 $\partial _{l}V_{\theta }^{\dagger }V_{\theta }$ 是偏全等的),而不会像预期的那样对 $V_{\theta }$ 施加任何约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信