Coherency-Aware Learning Control of Inverter-Dominated Grids: A Distributed Risk-Constrained Approach

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Kyung-Bin Kwon;Ramij Raja Hossain;Sayak Mukherjee;Kaustav Chatterjee;Soumya Kundu;Sameer Nekkalapu;Marcelo Elizondo
{"title":"Coherency-Aware Learning Control of Inverter-Dominated Grids: A Distributed Risk-Constrained Approach","authors":"Kyung-Bin Kwon;Ramij Raja Hossain;Sayak Mukherjee;Kaustav Chatterjee;Soumya Kundu;Sameer Nekkalapu;Marcelo Elizondo","doi":"10.1109/LCSYS.2024.3413868","DOIUrl":null,"url":null,"abstract":"This letter investigates the importance of integrating the coherency knowledge for designing controllers to dampen sustained oscillations in wide-area power networks with significant penetration of inverter-interfaced resources. Coherency is a fundamental property of power systems, where time-scale separation in frequency dynamics leads to clustered behavior among generators of different groups. Large-scale penetration of inverter-driven low inertia resources replacing conventional synchronous generators (SGs) can lead to perturbation in the coherent partitioning; hence, integrating such information is of utmost importance for oscillation control designs. We present the coherency-aware design of a distributed output feedback-based reinforcement learning method that additionally incorporates risk constraints to capture the uncertainties related to net-load fluctuations. The use of domain-aware coherency information has produced improved training and oscillation performance than the coherency-agnostic control design, hence proving to be effective in controller design. Finally, we validated the proposed method with numerical experiments on the benchmark IEEE 68-bus test system.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10556716/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This letter investigates the importance of integrating the coherency knowledge for designing controllers to dampen sustained oscillations in wide-area power networks with significant penetration of inverter-interfaced resources. Coherency is a fundamental property of power systems, where time-scale separation in frequency dynamics leads to clustered behavior among generators of different groups. Large-scale penetration of inverter-driven low inertia resources replacing conventional synchronous generators (SGs) can lead to perturbation in the coherent partitioning; hence, integrating such information is of utmost importance for oscillation control designs. We present the coherency-aware design of a distributed output feedback-based reinforcement learning method that additionally incorporates risk constraints to capture the uncertainties related to net-load fluctuations. The use of domain-aware coherency information has produced improved training and oscillation performance than the coherency-agnostic control design, hence proving to be effective in controller design. Finally, we validated the proposed method with numerical experiments on the benchmark IEEE 68-bus test system.
逆变器主导电网的一致性感知学习控制:分布式风险约束方法
这封信探讨了在设计控制器时整合一致性知识的重要性,以抑制广泛区域电力网络中的持续振荡。一致性是电力系统的基本属性,频率动态的时间尺度分离会导致不同组别发电机之间的集群行为。逆变器驱动的低惯性资源的大规模渗透取代了传统的同步发电机(SG),可能会导致一致性分区的扰动;因此,整合这些信息对于振荡控制设计至关重要。我们介绍了一种基于分布式输出反馈的强化学习方法的一致性感知设计,该方法还纳入了风险约束,以捕捉与净负荷波动相关的不确定性。与不考虑一致性的控制设计相比,领域感知一致性信息的使用提高了训练和振荡性能,因此在控制器设计中被证明是有效的。最后,我们在基准 IEEE 68 总线测试系统上进行了数值实验,验证了所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信