Stability of a Multiresponsive Sulfonium Vinyl Sulfide Linker toward Nucleophilic/Radical Thiols, Reactive Nitrogen Species, and in Cells under Pro-inflammatory Stimulation
Fatemeh Zare, Patrick Laplante, Andrea A. Greschner, Jean-François Cailhier and Marc A. Gauthier*,
{"title":"Stability of a Multiresponsive Sulfonium Vinyl Sulfide Linker toward Nucleophilic/Radical Thiols, Reactive Nitrogen Species, and in Cells under Pro-inflammatory Stimulation","authors":"Fatemeh Zare, Patrick Laplante, Andrea A. Greschner, Jean-François Cailhier and Marc A. Gauthier*, ","doi":"10.1021/acs.biomac.4c0068310.1021/acs.biomac.4c00683","DOIUrl":null,"url":null,"abstract":"<p >Chemical linkages that respond to biological stimuli are important for many pharmaceutical and biotechnological applications, making it relevant to explore new variants with different responsivity profiles. This work explores the responsiveness of a TAT peptide-based sulfonium vinyl sulfide probe that responds to nucleophilic thiols, radical thiol species (RTS), and reactive nitrogen species (RNS). Under model conditions, response to nucleophilic thiols was very slow (hours/days), though fast with down to molar equivalents of either RTS or RNS (minutes). These reactions led to the traceless release of a methionine-containing peptide in the first two cases and to a hydroxy nitration adduct in the third case. Despite the sensitive nature of the probe, it remained stable for at least ∼2 h in the presence of cells during TAT-mediated trafficking, even under pro-inflammatory stimulation. The thiol-responsiveness is intermediate to that observed for disulfide linkers and conventional cysteine–maleimide linkers, presenting opportunities for biotechnological applications.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":"25 9","pages":"6017–6025 6017–6025"},"PeriodicalIF":5.4000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.biomac.4c00683","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chemical linkages that respond to biological stimuli are important for many pharmaceutical and biotechnological applications, making it relevant to explore new variants with different responsivity profiles. This work explores the responsiveness of a TAT peptide-based sulfonium vinyl sulfide probe that responds to nucleophilic thiols, radical thiol species (RTS), and reactive nitrogen species (RNS). Under model conditions, response to nucleophilic thiols was very slow (hours/days), though fast with down to molar equivalents of either RTS or RNS (minutes). These reactions led to the traceless release of a methionine-containing peptide in the first two cases and to a hydroxy nitration adduct in the third case. Despite the sensitive nature of the probe, it remained stable for at least ∼2 h in the presence of cells during TAT-mediated trafficking, even under pro-inflammatory stimulation. The thiol-responsiveness is intermediate to that observed for disulfide linkers and conventional cysteine–maleimide linkers, presenting opportunities for biotechnological applications.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.