Leaching behavior of microplastics during sludge mechanical dewatering and its effect on activated sludge

IF 11.4 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
{"title":"Leaching behavior of microplastics during sludge mechanical dewatering and its effect on activated sludge","authors":"","doi":"10.1016/j.watres.2024.122395","DOIUrl":null,"url":null,"abstract":"<div><p>Dewatering is an indispensable link in sludge treatment, but its effect on the microplastics (MPs) remains inadequately understood. This study investigated the physicochemical changes and leaching behavior of MPs during the mechanical dewatering of sludge, as well as the impact of MP leachates on activated sludge (AS). After sludge dewatering, MPs exhibit rougher surfaces, decreased sizes and altered functional groups due to the addition of dewatering agents and the application of mechanical force. Meanwhile, plastic additives, depolymerization products, and derivatives of their interactions are leached from MPs during sludge dewatering process. The concentration of MP-based leachates in sludge is 2–25 times higher than that in water. The enhancement of pH and ionic strength caused by dewatering agents induces the release of MP leachates enriched with protein-like, fulvic acid-like, and soluble microbial by-product-like substances. The reflux of MP leachates in sludge dewatering liquor to the wastewater treatment system negatively impacts AS, leading to a decrease in COD removal rate and inhibition of the extracellular polymeric substances secretion. More importantly, MP leachates cause oxidative stress to microbial cells and alter the microbial community structure of AS at the phylum and genus levels. These findings confirm that MPs undergo aging and leaching during sludge dewatering process, and MP leachates may negatively affect the wastewater treatment system.</p></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":null,"pages":null},"PeriodicalIF":11.4000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0043135424012946/pdfft?md5=ffeef3561a109c3b7204fe93f283dd0f&pid=1-s2.0-S0043135424012946-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135424012946","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Dewatering is an indispensable link in sludge treatment, but its effect on the microplastics (MPs) remains inadequately understood. This study investigated the physicochemical changes and leaching behavior of MPs during the mechanical dewatering of sludge, as well as the impact of MP leachates on activated sludge (AS). After sludge dewatering, MPs exhibit rougher surfaces, decreased sizes and altered functional groups due to the addition of dewatering agents and the application of mechanical force. Meanwhile, plastic additives, depolymerization products, and derivatives of their interactions are leached from MPs during sludge dewatering process. The concentration of MP-based leachates in sludge is 2–25 times higher than that in water. The enhancement of pH and ionic strength caused by dewatering agents induces the release of MP leachates enriched with protein-like, fulvic acid-like, and soluble microbial by-product-like substances. The reflux of MP leachates in sludge dewatering liquor to the wastewater treatment system negatively impacts AS, leading to a decrease in COD removal rate and inhibition of the extracellular polymeric substances secretion. More importantly, MP leachates cause oxidative stress to microbial cells and alter the microbial community structure of AS at the phylum and genus levels. These findings confirm that MPs undergo aging and leaching during sludge dewatering process, and MP leachates may negatively affect the wastewater treatment system.

Abstract Image

污泥机械脱水过程中微塑料的浸出行为及其对活性污泥的影响
脱水是污泥处理过程中不可或缺的一个环节,但人们对脱水对微塑料(MPs)的影响仍缺乏足够的了解。本研究调查了污泥机械脱水过程中微塑料的物理化学变化和浸出行为,以及微塑料浸出物对活性污泥(AS)的影响。污泥脱水后,由于脱水剂的添加和机械力的作用,MPs 表现出表面粗糙、尺寸减小和官能团改变。同时,在污泥脱水过程中,塑料添加剂、解聚产物及其相互作用的衍生物会从 MP 中浸出。污泥中 MP 浸出物的浓度是水中浓度的 2-25 倍。脱水剂引起的 pH 值和离子强度的升高促使 MP 浸出物中富含蛋白质类、富里酸类和可溶性微生物副产物类物质的释放。污泥脱水液中的 MP 浸出物回流到废水处理系统会对 AS 产生负面影响,导致 COD 去除率下降,并抑制胞外聚合物物质的分泌。更重要的是,MP 浸出液会对微生物细胞造成氧化应激,并在门和属的层面上改变 AS 的微生物群落结构。这些发现证实了 MP 在污泥脱水过程中会发生老化和浸出,MP 浸出物可能会对污水处理系统产生负面影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Water Research
Water Research 环境科学-工程:环境
CiteScore
20.80
自引率
9.40%
发文量
1307
审稿时长
38 days
期刊介绍: Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include: •Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management; •Urban hydrology including sewer systems, stormwater management, and green infrastructure; •Drinking water treatment and distribution; •Potable and non-potable water reuse; •Sanitation, public health, and risk assessment; •Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions; •Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment; •Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution; •Environmental restoration, linked to surface water, groundwater and groundwater remediation; •Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts; •Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle; •Socio-economic, policy, and regulations studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信