Ammonia-induced stress response in liver disease progression and hepatic encephalopathy

IF 45.9 1区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY
Rocío Gallego-Durán, Anna Hadjihambi, Javier Ampuero, Christopher F. Rose, Rajiv Jalan, Manuel Romero-Gómez
{"title":"Ammonia-induced stress response in liver disease progression and hepatic encephalopathy","authors":"Rocío Gallego-Durán, Anna Hadjihambi, Javier Ampuero, Christopher F. Rose, Rajiv Jalan, Manuel Romero-Gómez","doi":"10.1038/s41575-024-00970-9","DOIUrl":null,"url":null,"abstract":"<p>Ammonia levels are orchestrated by a series of complex interrelated pathways in which the urea cycle has a central role. Liver dysfunction leads to an accumulation of ammonia, which is toxic and is strongly associated with disruption of potassium homeostasis, mitochondrial dysfunction, oxidative stress, inflammation, hypoxaemia and dysregulation of neurotransmission. Hyperammonaemia is a hallmark of hepatic encephalopathy and has been strongly associated with liver-related outcomes in patients with cirrhosis and liver failure. In addition to the established role of ammonia as a neurotoxin in the pathogenesis of hepatic encephalopathy, an increasing number of studies suggest that it can lead to hepatic fibrosis progression, sarcopenia, immune dysfunction and cancer. However, elevated systemic ammonia levels are uncommon in patients with metabolic dysfunction-associated steatotic liver disease. A clear causal relationship between ammonia-induced immune dysfunction and risk of infection has not yet been definitively proven. In this Review, we discuss the mechanisms by which ammonia produces its diverse deleterious effects and their clinical relevance in liver diseases, the importance of measuring ammonia levels for the diagnosis of hepatic encephalopathy, the prognosis of patients with cirrhosis and liver failure, and how our knowledge of inter-organ ammonia metabolism is leading to the development of novel therapeutic approaches.</p>","PeriodicalId":18793,"journal":{"name":"Nature Reviews Gastroenterology &Hepatology","volume":null,"pages":null},"PeriodicalIF":45.9000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Gastroenterology &Hepatology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41575-024-00970-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ammonia levels are orchestrated by a series of complex interrelated pathways in which the urea cycle has a central role. Liver dysfunction leads to an accumulation of ammonia, which is toxic and is strongly associated with disruption of potassium homeostasis, mitochondrial dysfunction, oxidative stress, inflammation, hypoxaemia and dysregulation of neurotransmission. Hyperammonaemia is a hallmark of hepatic encephalopathy and has been strongly associated with liver-related outcomes in patients with cirrhosis and liver failure. In addition to the established role of ammonia as a neurotoxin in the pathogenesis of hepatic encephalopathy, an increasing number of studies suggest that it can lead to hepatic fibrosis progression, sarcopenia, immune dysfunction and cancer. However, elevated systemic ammonia levels are uncommon in patients with metabolic dysfunction-associated steatotic liver disease. A clear causal relationship between ammonia-induced immune dysfunction and risk of infection has not yet been definitively proven. In this Review, we discuss the mechanisms by which ammonia produces its diverse deleterious effects and their clinical relevance in liver diseases, the importance of measuring ammonia levels for the diagnosis of hepatic encephalopathy, the prognosis of patients with cirrhosis and liver failure, and how our knowledge of inter-organ ammonia metabolism is leading to the development of novel therapeutic approaches.

Abstract Image

肝病进展和肝性脑病中氨诱导的应激反应
氨水平由一系列复杂的相互关联的途径协调,其中尿素循环起着核心作用。肝功能异常会导致氨积累,氨具有毒性,与钾平衡紊乱、线粒体功能障碍、氧化应激、炎症、低氧血症和神经传递失调密切相关。高氨血症是肝性脑病的标志,与肝硬化和肝衰竭患者的肝脏相关结果密切相关。除了氨作为神经毒素在肝性脑病发病机制中的既定作用外,越来越多的研究表明,氨可导致肝纤维化进展、肌肉疏松症、免疫功能障碍和癌症。然而,在代谢功能障碍相关脂肪性肝病患者中,全身氨水平升高的情况并不常见。氨引起的免疫功能障碍与感染风险之间的明确因果关系尚未得到明确证实。在这篇综述中,我们将讨论氨产生各种有害影响的机制及其在肝病中的临床意义、测量氨水平对诊断肝性脑病的重要性、肝硬化和肝衰竭患者的预后,以及我们对器官间氨代谢的了解如何促进新型治疗方法的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
52.30
自引率
0.60%
发文量
147
审稿时长
6-12 weeks
期刊介绍: Nature Reviews Gastroenterology & Hepatology aims to serve as the leading resource for Reviews and commentaries within the scientific and medical communities it caters to. The journal strives to maintain authority, accessibility, and clarity in its published articles, which are complemented by easily understandable figures, tables, and other display items. Dedicated to providing exceptional service to authors, referees, and readers, the editorial team works diligently to maximize the usefulness and impact of each publication. The journal encompasses a wide range of content types, including Research Highlights, News & Views, Comments, Reviews, Perspectives, and Consensus Statements, all pertinent to gastroenterologists and hepatologists. With its broad scope, Nature Reviews Gastroenterology & Hepatology ensures that its articles reach a diverse audience, aiming for the widest possible dissemination of valuable information. Nature Reviews Gastroenterology & Hepatology is part of the Nature Reviews portfolio of journals.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信