Conveyor mode enabling continuous ionic thermoelectric conversion

IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Joule Pub Date : 2024-09-09 DOI:10.1016/j.joule.2024.08.004
Dongxing Song, Chunyu Zhao, Bin Chen, Weigang Ma, Ke Wang, Xing Zhang
{"title":"Conveyor mode enabling continuous ionic thermoelectric conversion","authors":"Dongxing Song, Chunyu Zhao, Bin Chen, Weigang Ma, Ke Wang, Xing Zhang","doi":"10.1016/j.joule.2024.08.004","DOIUrl":null,"url":null,"abstract":"<p>The huge thermopower observed in the thermodiffusion mechanism of ionic thermoelectric (<em>i</em>-TE) materials has led researchers to conceive of the upgrading of thermoelectric technology. However, the intermittent power generation in the capacitor mode has been a major hindrance to achieving optimal performance. This work proposes a conveyor mode for continuous <em>i</em>-TE conversion in mixed ion-electron-conducting <em>i</em>-TE material with an ionic circuit. In this conveyor mode, ion-electronic friction serves as the link between ions and electrons, enabling the thermally diffused ions to convey electrons to power the load, and persistent ionic transport, owing to the ionic circuit, ensures continuous power generation. Experiments demonstrate continuous power generation and significant improvements of power density in the conveyor mode. Theoretical analysis shows that the conveyor mode is competitive to not only the capacitor mode but also a general electronic thermoelectric conversion. Our study points out a direction for the development of <em>i</em>-TE technology.</p>","PeriodicalId":343,"journal":{"name":"Joule","volume":null,"pages":null},"PeriodicalIF":38.6000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.joule.2024.08.004","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The huge thermopower observed in the thermodiffusion mechanism of ionic thermoelectric (i-TE) materials has led researchers to conceive of the upgrading of thermoelectric technology. However, the intermittent power generation in the capacitor mode has been a major hindrance to achieving optimal performance. This work proposes a conveyor mode for continuous i-TE conversion in mixed ion-electron-conducting i-TE material with an ionic circuit. In this conveyor mode, ion-electronic friction serves as the link between ions and electrons, enabling the thermally diffused ions to convey electrons to power the load, and persistent ionic transport, owing to the ionic circuit, ensures continuous power generation. Experiments demonstrate continuous power generation and significant improvements of power density in the conveyor mode. Theoretical analysis shows that the conveyor mode is competitive to not only the capacitor mode but also a general electronic thermoelectric conversion. Our study points out a direction for the development of i-TE technology.

Abstract Image

可实现连续离子热电转换的输送模式
在离子热电(i-TE)材料的热扩散机制中观察到的巨大热功率促使研究人员构想热电技术的升级。然而,电容器模式下的间歇性发电一直是实现最佳性能的主要障碍。这项研究提出了一种在具有离子回路的离子-电子混合传导 i-TE 材料中进行连续 i-TE 转换的传送带模式。在这种传输模式中,离子-电子摩擦是离子和电子之间的纽带,使热扩散离子能够传输电子,为负载供电,而离子回路带来的持续离子传输则确保了持续发电。实验证明,在输送模式下可持续发电并显著提高功率密度。理论分析表明,输送模式不仅对电容器模式有竞争力,而且对一般的电子热电转换也有竞争力。我们的研究为 i-TE 技术的发展指明了方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信