Claire E. Willing, Joe Wan, Jay J. Yeam, Alex M. Cessna, Kabir G. Peay
{"title":"Arbuscular mycorrhizal fungi equalize differences in plant fitness and facilitate plant species coexistence through niche differentiation","authors":"Claire E. Willing, Joe Wan, Jay J. Yeam, Alex M. Cessna, Kabir G. Peay","doi":"10.1038/s41559-024-02526-1","DOIUrl":null,"url":null,"abstract":"Mycorrhizal fungi are essential to the establishment of the vast majority of plant species but are often conceptualized with contradictory roles in plant community assembly. On the one hand, host-specific mycorrhizal fungi may allow a plant to be competitively dominant by enhancing growth. On the other hand, host-specific mycorrhizal fungi with different functional capabilities may increase nutrient niche partitioning, allowing plant species to coexist. Here, to resolve the balance of these two contradictory forces, we used a controlled greenhouse study to manipulate the presence of two main types of mycorrhizal fungus, ectomycorrhizal fungi and arbuscular mycorrhizal fungi, and used a range of conspecific and heterospecific competitor densities to investigate the role of mycorrhizal fungi in plant competition and coexistence. We find that the presence of arbuscular mycorrhizal fungi equalizes fitness differences between plants and stabilizes competition to create conditions for host species coexistence. Our results show how below-ground mutualisms can shift outcomes of plant competition and that a holistic view of plant communities that incorporates their mycorrhizal partners is important in predicting plant community dynamics. A controlled greenhouse study that manipulated the presence of both ectomycorrhizal fungi and arbuscular mycorrhizal fungi at a range of conspecific and heterospecific plant competitor densities shows that arbuscular mycorrhizal fungi promote plant species coexistence by equalizing fitness differences and stabilizing competition.","PeriodicalId":18835,"journal":{"name":"Nature ecology & evolution","volume":"8 11","pages":"2058-2071"},"PeriodicalIF":13.9000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature ecology & evolution","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41559-024-02526-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mycorrhizal fungi are essential to the establishment of the vast majority of plant species but are often conceptualized with contradictory roles in plant community assembly. On the one hand, host-specific mycorrhizal fungi may allow a plant to be competitively dominant by enhancing growth. On the other hand, host-specific mycorrhizal fungi with different functional capabilities may increase nutrient niche partitioning, allowing plant species to coexist. Here, to resolve the balance of these two contradictory forces, we used a controlled greenhouse study to manipulate the presence of two main types of mycorrhizal fungus, ectomycorrhizal fungi and arbuscular mycorrhizal fungi, and used a range of conspecific and heterospecific competitor densities to investigate the role of mycorrhizal fungi in plant competition and coexistence. We find that the presence of arbuscular mycorrhizal fungi equalizes fitness differences between plants and stabilizes competition to create conditions for host species coexistence. Our results show how below-ground mutualisms can shift outcomes of plant competition and that a holistic view of plant communities that incorporates their mycorrhizal partners is important in predicting plant community dynamics. A controlled greenhouse study that manipulated the presence of both ectomycorrhizal fungi and arbuscular mycorrhizal fungi at a range of conspecific and heterospecific plant competitor densities shows that arbuscular mycorrhizal fungi promote plant species coexistence by equalizing fitness differences and stabilizing competition.
Nature ecology & evolutionAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
22.20
自引率
2.40%
发文量
282
期刊介绍:
Nature Ecology & Evolution is interested in the full spectrum of ecological and evolutionary biology, encompassing approaches at the molecular, organismal, population, community and ecosystem levels, as well as relevant parts of the social sciences. Nature Ecology & Evolution provides a place where all researchers and policymakers interested in all aspects of life's diversity can come together to learn about the most accomplished and significant advances in the field and to discuss topical issues. An online-only monthly journal, our broad scope ensures that the research published reaches the widest possible audience of scientists.