Thermally induced structural evolution and nanoscale interfacial dynamics in Bi-Sb-Te layered nanostructures

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2024-09-09 DOI:10.1016/j.matt.2024.08.006
Parivash Moradifar, Tao Wang, Nadire Nayir, Tiva Sharifi, Ke Wang, Pulickel Ajayan, Adri C.T. van Duin, Nasim Alem
{"title":"Thermally induced structural evolution and nanoscale interfacial dynamics in Bi-Sb-Te layered nanostructures","authors":"Parivash Moradifar, Tao Wang, Nadire Nayir, Tiva Sharifi, Ke Wang, Pulickel Ajayan, Adri C.T. van Duin, Nasim Alem","doi":"10.1016/j.matt.2024.08.006","DOIUrl":null,"url":null,"abstract":"<p>Layered chalcogenides, including Bi-Sb-Te ternary alloys and heterostructures, are renowned as thermoelectric and topological insulators and have recently been highlighted as plasmonic building blocks beyond noble metals. We conduct joint <em>in situ</em> transmission electron microscopy and density functional theory calculations to investigate the temperature-dependent nanoscale dynamics and interfacial properties, identifying the role of native defects and edge configurations in the anisotropic sublimation of Bi<sub>2</sub>Te<sub>3</sub>-Sb<sub>2</sub>Te<sub>3</sub> heterostructures and Sb<sub>2-x</sub>Bi<sub>x</sub>Te<sub>3</sub> alloys. We report structural dynamics, including edge evolution, layer-by-layer sublimation, and the formation and coalescence of thermally induced polygonal nanopores. These nanopores are initiated by preferential dissociation of tellurium, reducing thermal stability in heterostructures. Triangular and quasi-hexagonal configurations dominate nanopore structures in heterostructures. Our calculations reveal antisite defects (Te<sub>Sb</sub> and Te<sub>Bi</sub>) as key players in defect-assisted sublimation. These findings enhance our understanding of nanoscale dynamics and assist in designing tunable low-dimensional chalcogenides.</p>","PeriodicalId":388,"journal":{"name":"Matter","volume":null,"pages":null},"PeriodicalIF":17.3000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2024.08.006","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Layered chalcogenides, including Bi-Sb-Te ternary alloys and heterostructures, are renowned as thermoelectric and topological insulators and have recently been highlighted as plasmonic building blocks beyond noble metals. We conduct joint in situ transmission electron microscopy and density functional theory calculations to investigate the temperature-dependent nanoscale dynamics and interfacial properties, identifying the role of native defects and edge configurations in the anisotropic sublimation of Bi2Te3-Sb2Te3 heterostructures and Sb2-xBixTe3 alloys. We report structural dynamics, including edge evolution, layer-by-layer sublimation, and the formation and coalescence of thermally induced polygonal nanopores. These nanopores are initiated by preferential dissociation of tellurium, reducing thermal stability in heterostructures. Triangular and quasi-hexagonal configurations dominate nanopore structures in heterostructures. Our calculations reveal antisite defects (TeSb and TeBi) as key players in defect-assisted sublimation. These findings enhance our understanding of nanoscale dynamics and assist in designing tunable low-dimensional chalcogenides.

Abstract Image

铋锑碲层状纳米结构中的热诱导结构演化和纳米级界面动力学
层状卤化物(包括铋锑碲三元合金和异质结构)是著名的热电和拓扑绝缘体,最近还被强调为贵金属之外的质子构件。我们联合进行了原位透射电子显微镜和密度泛函理论计算,以研究随温度变化的纳米尺度动力学和界面特性,确定了原生缺陷和边缘构型在 Bi2Te3-Sb2Te3 异质结构和 Sb2-xBixTe3 合金的各向异性升华中的作用。我们报告了结构动态,包括边缘演变、逐层升华以及热诱导多边形纳米孔的形成和凝聚。这些纳米孔由碲的优先解离引发,降低了异质结构的热稳定性。异质结构中的纳米孔结构以三角形和准六边形构型为主。我们的计算揭示了反卫星缺陷(TeSb 和 TeBi)在缺陷辅助升华中的关键作用。这些发现加深了我们对纳米尺度动力学的理解,有助于设计可调谐的低维铬化镓。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信