Mean-State and Seasonal Variability in Temperature Structure and Heat Transport in the East Australian Current System From a Multi-Decadal Regional Ocean Model

IF 3.3 2区 地球科学 Q1 OCEANOGRAPHY
Fernando Sobral, Moninya Roughan, Neil Malan, Junde Li
{"title":"Mean-State and Seasonal Variability in Temperature Structure and Heat Transport in the East Australian Current System From a Multi-Decadal Regional Ocean Model","authors":"Fernando Sobral,&nbsp;Moninya Roughan,&nbsp;Neil Malan,&nbsp;Junde Li","doi":"10.1029/2023JC020438","DOIUrl":null,"url":null,"abstract":"<p>Western Boundary Currents (WBCs) such as the East Australian Current (EAC) are vital for moving heat from low to high latitudes, controlling regional weather and global climate. Previous EAC System studies have provided a general overview of temperature variability and heat transport, but they lacked spatial and seasonal detail. Using a high-resolution, 26-year-long ocean model simulation, we systematically characterize the seasonal variability and structure in key temperature metrics and heat transport in the EAC System. Our findings reveal a clear seasonal cycle with a poleward expansion of key variables in summer (mean and eddy kinetic energy, upper ocean heat content, heat transport) and contraction equatorward with reductions in winter. We show that the dynamical regime transition, from jet to eddy-dominated at the EAC separation zone (<span></span><math>\n <semantics>\n <mrow>\n <mn>32</mn>\n <mo>−</mo>\n <mn>33.5</mn>\n <mo>°</mo>\n </mrow>\n <annotation> $32-33.5{}^{\\circ}$</annotation>\n </semantics></math>S), modifies the net meridional heat transport. Upstream of separation, transport is poleward, with some zonal input of heat. Downstream of EAC separation, there is an increase in heat recirculation by mesoscale eddies combined with a smaller zonal export of heat. This study highlights the significance of resolving spatio-temporal variability in WBC systems driven by mesoscale dynamics, which will have implications for the representation of critical dynamics in future climate models.</p>","PeriodicalId":54340,"journal":{"name":"Journal of Geophysical Research-Oceans","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JC020438","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research-Oceans","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023JC020438","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

Western Boundary Currents (WBCs) such as the East Australian Current (EAC) are vital for moving heat from low to high latitudes, controlling regional weather and global climate. Previous EAC System studies have provided a general overview of temperature variability and heat transport, but they lacked spatial and seasonal detail. Using a high-resolution, 26-year-long ocean model simulation, we systematically characterize the seasonal variability and structure in key temperature metrics and heat transport in the EAC System. Our findings reveal a clear seasonal cycle with a poleward expansion of key variables in summer (mean and eddy kinetic energy, upper ocean heat content, heat transport) and contraction equatorward with reductions in winter. We show that the dynamical regime transition, from jet to eddy-dominated at the EAC separation zone ( 32 33.5 ° $32-33.5{}^{\circ}$ S), modifies the net meridional heat transport. Upstream of separation, transport is poleward, with some zonal input of heat. Downstream of EAC separation, there is an increase in heat recirculation by mesoscale eddies combined with a smaller zonal export of heat. This study highlights the significance of resolving spatio-temporal variability in WBC systems driven by mesoscale dynamics, which will have implications for the representation of critical dynamics in future climate models.

Abstract Image

一个多旬区域海洋模式显示的东澳大利亚洋流系统温度结构和热量输送的平均状态和季节变异性
西边界洋流(WBC),如东澳大利亚洋流(EAC),对于将热量从低纬度向高纬度输送、控制区域天气和全球气候至关重要。以往的 EAC 系统研究提供了温度变化和热量输送的总体概况,但缺乏空间和季节细节。利用长达 26 年的高分辨率海洋模式模拟,我们系统地描述了 EAC 系统中关键温度指标和热量传输的季节变异性和结构。我们的研究结果揭示了一个明显的季节周期,即夏季关键变量(平均动能和涡旋动能、上层海洋热含量、热传输)向极地扩展,冬季向赤道收缩并减少。我们的研究表明,在 EAC 分离区(32 - 33.5 ° $32-33.5{}^{\circ}$S),从喷流主导到涡流主导的动力机制转换改变了经向热量的净输送。在分隔带的上游,热量是向极地输送的,并有一些带状热量输入。在 EAC 分离的下游,中尺度涡的热再循环增加,同时热量的带状输出减少。这项研究强调了解决由中尺度动力学驱动的中纬度白细胞系统时空变化的重要性,这将对未来气候模式中关键动力学的表述产生影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research-Oceans
Journal of Geophysical Research-Oceans Earth and Planetary Sciences-Oceanography
CiteScore
7.00
自引率
13.90%
发文量
429
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信