An emergency frequency control method based on efficient coordination between generator tripping and power regulation for wind power integrated system

IF 3.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
{"title":"An emergency frequency control method based on efficient coordination between generator tripping and power regulation for wind power integrated system","authors":"","doi":"10.1016/j.epsr.2024.111045","DOIUrl":null,"url":null,"abstract":"<div><p>Wind generators with integrated inertia control can autonomously regulate active power in response to frequency variations within the power system. Generator tripping is often necessary to address frequency increases during significant grid disturbances. This tripping alters the adjusLEle power range of the wind generator and frequency characteristics of the power system, impacting power regulation capacity and modifying the required generator tripping power (GTP). Precise frequency control in wind power integrated systems is challenging due to the inability to accurately quantify frequency security conditions. To address this, the synthetic power regulating speed (SPRS) is deduced to characterize regulation capability. The ranges of required GTP and SPRS are modeled under constraints including maximum frequency deviation, rate of frequency change, and the frequency regulating capacity of wind farms. A novel concept of the frequency dynamic security domain is introduced, accounting for the interplay among generator tripping, power regulation, and frequency characteristics. This approach includes identifying generator tripping locations and determining the required GTP by establishing the frequency dynamic security domain. Additionally, an emergency frequency control method that coordinates generator tripping and power regulation is proposed. Simulations show that this method minimizes generator tripping while avoiding frequency threshold exceedance, thus preserving power regulation capability.</p></div>","PeriodicalId":50547,"journal":{"name":"Electric Power Systems Research","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electric Power Systems Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378779624009313","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Wind generators with integrated inertia control can autonomously regulate active power in response to frequency variations within the power system. Generator tripping is often necessary to address frequency increases during significant grid disturbances. This tripping alters the adjusLEle power range of the wind generator and frequency characteristics of the power system, impacting power regulation capacity and modifying the required generator tripping power (GTP). Precise frequency control in wind power integrated systems is challenging due to the inability to accurately quantify frequency security conditions. To address this, the synthetic power regulating speed (SPRS) is deduced to characterize regulation capability. The ranges of required GTP and SPRS are modeled under constraints including maximum frequency deviation, rate of frequency change, and the frequency regulating capacity of wind farms. A novel concept of the frequency dynamic security domain is introduced, accounting for the interplay among generator tripping, power regulation, and frequency characteristics. This approach includes identifying generator tripping locations and determining the required GTP by establishing the frequency dynamic security domain. Additionally, an emergency frequency control method that coordinates generator tripping and power regulation is proposed. Simulations show that this method minimizes generator tripping while avoiding frequency threshold exceedance, thus preserving power regulation capability.

基于发电机跳闸与功率调节高效协调的风电集成系统紧急频率控制方法
集成惯性控制功能的风力发电机可根据电力系统内的频率变化自主调节有功功率。在电网受到严重干扰时,往往需要发电机跳闸来应对频率上升。这种跳闸会改变风力发电机的可调功率范围和电力系统的频率特性,影响功率调节能力并改变所需的发电机跳闸功率 (GTP)。由于无法精确量化频率安全条件,风电集成系统中的精确频率控制具有挑战性。为此,我们推导出合成功率调节速度 (SPRS),以描述调节能力。在最大频率偏差、频率变化率和风电场频率调节能力等约束条件下,对所需的 GTP 和 SPRS 范围进行建模。引入了频率动态安全域的新概念,考虑了发电机跳闸、功率调节和频率特性之间的相互作用。这种方法包括确定发电机跳闸位置,并通过建立频率动态安全域来确定所需的 GTP。此外,还提出了一种协调发电机跳闸和功率调节的紧急频率控制方法。模拟结果表明,这种方法能最大限度地减少发电机跳闸,同时避免频率阈值超标,从而保持功率调节能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electric Power Systems Research
Electric Power Systems Research 工程技术-工程:电子与电气
CiteScore
7.50
自引率
17.90%
发文量
963
审稿时长
3.8 months
期刊介绍: Electric Power Systems Research is an international medium for the publication of original papers concerned with the generation, transmission, distribution and utilization of electrical energy. The journal aims at presenting important results of work in this field, whether in the form of applied research, development of new procedures or components, orginal application of existing knowledge or new designapproaches. The scope of Electric Power Systems Research is broad, encompassing all aspects of electric power systems. The following list of topics is not intended to be exhaustive, but rather to indicate topics that fall within the journal purview. • Generation techniques ranging from advances in conventional electromechanical methods, through nuclear power generation, to renewable energy generation. • Transmission, spanning the broad area from UHV (ac and dc) to network operation and protection, line routing and design. • Substation work: equipment design, protection and control systems. • Distribution techniques, equipment development, and smart grids. • The utilization area from energy efficiency to distributed load levelling techniques. • Systems studies including control techniques, planning, optimization methods, stability, security assessment and insulation coordination.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信