Guang Zhang , Kai Wang , Miao Yu , Abhilash Suryan , Zu Chao Zhu , Zhe Lin
{"title":"Numerical analysis on dynamic evolution characteristics of cryogenic cavitation through a Venturi tube","authors":"Guang Zhang , Kai Wang , Miao Yu , Abhilash Suryan , Zu Chao Zhu , Zhe Lin","doi":"10.1016/j.cryogenics.2024.103937","DOIUrl":null,"url":null,"abstract":"<div><p>Venturi tube can be used to measure the flow rate of stable single-phase fluid, which plays an important role in chemical industry, energy, aerospace and other fields. Due to the complex physical properties of cryogenic fluids, it is of great significance to study the cavitation characteristics of cryogenic fluids for practical engineering. In this paper, the modified Zwart cavitation model is used to study the evolution characteristics of cryogenic cavitation in Venturi tube and its relationship with turbulent kinetic energy under different pressure ratios by using dimensionless number <em>P</em><sub>r</sub> instead of cavitation number. The <em>P</em><sub>r</sub> value affects the development of cavitation to a large extent. When <em>P</em><sub>r</sub> = 1.3, cavitation is in a stable development mode. When <em>P</em><sub>r</sub> = 2.3, the development mode of cavitation changes from steady state to dynamic state. The temporal and spatial correlation between cavitation and vortex structure is studied by <em>Q</em>-criterion, and the geometric similarity between cavitation cloud and vortex structure in the development process is analyzed. The entropy production caused by velocity gradient change, turbulent dissipation and wall shear stress is further analyzed by entropy diagnosis method. The results show that the change of <em>P</em><sub>r</sub> value plays a leading role in the distribution of entropy production, and the generation and collapse of cavitation in the evolution process also have a great influence on the distribution of entropy production.</p></div>","PeriodicalId":10812,"journal":{"name":"Cryogenics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryogenics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011227524001577","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Venturi tube can be used to measure the flow rate of stable single-phase fluid, which plays an important role in chemical industry, energy, aerospace and other fields. Due to the complex physical properties of cryogenic fluids, it is of great significance to study the cavitation characteristics of cryogenic fluids for practical engineering. In this paper, the modified Zwart cavitation model is used to study the evolution characteristics of cryogenic cavitation in Venturi tube and its relationship with turbulent kinetic energy under different pressure ratios by using dimensionless number Pr instead of cavitation number. The Pr value affects the development of cavitation to a large extent. When Pr = 1.3, cavitation is in a stable development mode. When Pr = 2.3, the development mode of cavitation changes from steady state to dynamic state. The temporal and spatial correlation between cavitation and vortex structure is studied by Q-criterion, and the geometric similarity between cavitation cloud and vortex structure in the development process is analyzed. The entropy production caused by velocity gradient change, turbulent dissipation and wall shear stress is further analyzed by entropy diagnosis method. The results show that the change of Pr value plays a leading role in the distribution of entropy production, and the generation and collapse of cavitation in the evolution process also have a great influence on the distribution of entropy production.
期刊介绍:
Cryogenics is the world''s leading journal focusing on all aspects of cryoengineering and cryogenics. Papers published in Cryogenics cover a wide variety of subjects in low temperature engineering and research. Among the areas covered are:
- Applications of superconductivity: magnets, electronics, devices
- Superconductors and their properties
- Properties of materials: metals, alloys, composites, polymers, insulations
- New applications of cryogenic technology to processes, devices, machinery
- Refrigeration and liquefaction technology
- Thermodynamics
- Fluid properties and fluid mechanics
- Heat transfer
- Thermometry and measurement science
- Cryogenics in medicine
- Cryoelectronics