{"title":"Effect of solvothermal reaction time on adsorption and photocatalytic activity of spinel ZnFe2O4 nanoparticles","authors":"","doi":"10.1016/j.jphotochem.2024.116001","DOIUrl":null,"url":null,"abstract":"<div><p>The present investigation explored the impact of solvothermal reaction time on the adsorption properties of synthesized spinel ZnFe<sub>2</sub>O<sub>4</sub> Nanoparticles (ZF NPs) and their photocatalytic activity for the degradation of congo red (CR) dye. The structure, morphology and chemical composition is identified for the synthesized ZF NPs. The reaction times for the solvothermal synthesis of ZF NPs were investigated at time intervals of 6 hrs and 18 hrs which are denoted as ZF-6 h and ZF-18 h respectively. The XRD confirms the formation of spinel-type ZF-6 h and ZF-18 h with crystallite size of 5.50 nm and 8.36 nm for ZF-6 h and ZF-18 h respectively. The FESEM image of ZF-6 h exhibits microspheres, whereas in ZF-18 h NPs, the microspheres undergoes deformation. TEM analysis of ZF-6 h revealed that the microspheres were consists of 8–10 nm size ZF-NPs. Raman spectroscopy and XPS studies indicates, the reaction time influence the occupancy with 64 % and 32 % of inversion of Zn<sup>2+</sup> cations from tetrahedral to octahedral sites in ZF-6 h and ZF-18 h, respectively. The surface area of mesoporous ZF-6 h and ZF-18 h are 138.29 m<sup>2</sup>/g and 128.41 m<sup>2</sup>/g respectively as confirmed using BET and BJH techniques. The CR dye adsorption capacity of 123.73 mg/g for ZF-6 h is higher compared to ZF-18 h (99.93 mg/g). The maximum dye removal efficiency evaluated for ZF-6 h NPs and ZF-18 h NPs was 87.33 % and 73.09 % respectively upon exposure of natural sunlight. The recyclability study identifies that ZF-6 h NPs remain stable for three degradation cycles. These results indicate that reaction time in solvothermal synthesis is sensitive to the morphology and physicochemical properties of ZF NPs. The enhanced performance of such ZF NPs is attributed to the synergistic effect of adsorption followed by photocatalytic (photo-Fenton) degradation of dyes.</p></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology A-chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1010603024005458","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The present investigation explored the impact of solvothermal reaction time on the adsorption properties of synthesized spinel ZnFe2O4 Nanoparticles (ZF NPs) and their photocatalytic activity for the degradation of congo red (CR) dye. The structure, morphology and chemical composition is identified for the synthesized ZF NPs. The reaction times for the solvothermal synthesis of ZF NPs were investigated at time intervals of 6 hrs and 18 hrs which are denoted as ZF-6 h and ZF-18 h respectively. The XRD confirms the formation of spinel-type ZF-6 h and ZF-18 h with crystallite size of 5.50 nm and 8.36 nm for ZF-6 h and ZF-18 h respectively. The FESEM image of ZF-6 h exhibits microspheres, whereas in ZF-18 h NPs, the microspheres undergoes deformation. TEM analysis of ZF-6 h revealed that the microspheres were consists of 8–10 nm size ZF-NPs. Raman spectroscopy and XPS studies indicates, the reaction time influence the occupancy with 64 % and 32 % of inversion of Zn2+ cations from tetrahedral to octahedral sites in ZF-6 h and ZF-18 h, respectively. The surface area of mesoporous ZF-6 h and ZF-18 h are 138.29 m2/g and 128.41 m2/g respectively as confirmed using BET and BJH techniques. The CR dye adsorption capacity of 123.73 mg/g for ZF-6 h is higher compared to ZF-18 h (99.93 mg/g). The maximum dye removal efficiency evaluated for ZF-6 h NPs and ZF-18 h NPs was 87.33 % and 73.09 % respectively upon exposure of natural sunlight. The recyclability study identifies that ZF-6 h NPs remain stable for three degradation cycles. These results indicate that reaction time in solvothermal synthesis is sensitive to the morphology and physicochemical properties of ZF NPs. The enhanced performance of such ZF NPs is attributed to the synergistic effect of adsorption followed by photocatalytic (photo-Fenton) degradation of dyes.
期刊介绍:
JPPA publishes the results of fundamental studies on all aspects of chemical phenomena induced by interactions between light and molecules/matter of all kinds.
All systems capable of being described at the molecular or integrated multimolecular level are appropriate for the journal. This includes all molecular chemical species as well as biomolecular, supramolecular, polymer and other macromolecular systems, as well as solid state photochemistry. In addition, the journal publishes studies of semiconductor and other photoactive organic and inorganic materials, photocatalysis (organic, inorganic, supramolecular and superconductor).
The scope includes condensed and gas phase photochemistry, as well as synchrotron radiation chemistry. A broad range of processes and techniques in photochemistry are covered such as light induced energy, electron and proton transfer; nonlinear photochemical behavior; mechanistic investigation of photochemical reactions and identification of the products of photochemical reactions; quantum yield determinations and measurements of rate constants for primary and secondary photochemical processes; steady-state and time-resolved emission, ultrafast spectroscopic methods, single molecule spectroscopy, time resolved X-ray diffraction, luminescence microscopy, and scattering spectroscopy applied to photochemistry. Papers in emerging and applied areas such as luminescent sensors, electroluminescence, solar energy conversion, atmospheric photochemistry, environmental remediation, and related photocatalytic chemistry are also welcome.