Physiological, molecular, and morphological adjustment to waterlogging stress in ramie and selection of waterlogging-tolerant varieties

IF 6.1 2区 生物学 Q1 PLANT SCIENCES
{"title":"Physiological, molecular, and morphological adjustment to waterlogging stress in ramie and selection of waterlogging-tolerant varieties","authors":"","doi":"10.1016/j.plaphy.2024.109101","DOIUrl":null,"url":null,"abstract":"<div><p>Waterlogging stress is a severe abiotic challenge that impedes plant growth and development. Ramie (<em>Boehmeria nivea</em> L.) is a Chinese traditional characteristic economic crop, valued for its fibers and by-products. To investigate the waterlogging tolerance of ramie and provide the scientific basis for selecting waterlogging-tolerant ramie varieties, this study examined the morphological, physiological, biochemical, and molecular responses of 15 ramie germplasms (varieties) under waterlogging stress. The results revealed varied impacts of waterlogging stress across the 15 ramie varieties, characterized by a decrease in SPAD values, net photosynthesis rates, and relative water content of ramie leaves, along with a significant increase in relative conductivity and the activities of antioxidant enzymes such as SOD, POD, CAT, and APX. Additionally, the levels of soluble sugars, soluble proteins, and free proline exhibited varying degrees of increase. Through Principal Component Analysis (PCA), ZZ_2 and ZSZ_1 were identified as relatively tolerant and susceptible varieties. Transcriptome analysis showed that the differential expressed genes between ZZ_2 and ZSZ_1 were significantly enriched in metabolic pathways, ascorbate and aldarate metabolism, and inositol phosphate metabolism, under waterlogging stress. In addition, the expression of hypoxia-responsive genes was higher in ZZ_2 than in ZSZ_1 under waterlogging stress. These differences might account for the varied waterlogging responses between the two varieties. Therefore, this study explored the morpho-physiological responses of ramie under waterlogging stress and identified the molecular mechanisms involved, providing valuable insights for improving ramie varieties and breeding new ones.</p></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942824007691","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Waterlogging stress is a severe abiotic challenge that impedes plant growth and development. Ramie (Boehmeria nivea L.) is a Chinese traditional characteristic economic crop, valued for its fibers and by-products. To investigate the waterlogging tolerance of ramie and provide the scientific basis for selecting waterlogging-tolerant ramie varieties, this study examined the morphological, physiological, biochemical, and molecular responses of 15 ramie germplasms (varieties) under waterlogging stress. The results revealed varied impacts of waterlogging stress across the 15 ramie varieties, characterized by a decrease in SPAD values, net photosynthesis rates, and relative water content of ramie leaves, along with a significant increase in relative conductivity and the activities of antioxidant enzymes such as SOD, POD, CAT, and APX. Additionally, the levels of soluble sugars, soluble proteins, and free proline exhibited varying degrees of increase. Through Principal Component Analysis (PCA), ZZ_2 and ZSZ_1 were identified as relatively tolerant and susceptible varieties. Transcriptome analysis showed that the differential expressed genes between ZZ_2 and ZSZ_1 were significantly enriched in metabolic pathways, ascorbate and aldarate metabolism, and inositol phosphate metabolism, under waterlogging stress. In addition, the expression of hypoxia-responsive genes was higher in ZZ_2 than in ZSZ_1 under waterlogging stress. These differences might account for the varied waterlogging responses between the two varieties. Therefore, this study explored the morpho-physiological responses of ramie under waterlogging stress and identified the molecular mechanisms involved, providing valuable insights for improving ramie varieties and breeding new ones.

苎麻对水涝胁迫的生理、分子和形态调整以及耐水涝品种的选育
水涝胁迫是阻碍植物生长和发育的严峻非生物挑战。苎麻(Boehmeria nivea L.)是中国传统的特色经济作物,其纤维和副产品价值很高。为了研究苎麻的耐涝性,为筛选耐涝苎麻品种提供科学依据,本研究考察了 15 个苎麻种质(品种)在涝胁迫下的形态、生理、生化和分子反应。结果表明,涝胁迫对 15 个苎麻品种的影响各不相同,其特点是苎麻叶片的 SPAD 值、净光合速率和相对含水量下降,而相对电导率和 SOD、POD、CAT 和 APX 等抗氧化酶的活性显著增加。此外,可溶性糖、可溶性蛋白质和游离脯氨酸的含量也有不同程度的增加。通过主成分分析(PCA),ZZ_2 和 ZSZ_1 被确定为相对耐受和易感品种。转录组分析表明,在水涝胁迫下,ZZ_2 和 ZSZ_1 的差异表达基因在代谢途径、抗坏血酸和醛酸代谢以及肌醇磷酸代谢中明显富集。此外,在涝胁迫下,ZZ_2 中缺氧反应基因的表达量高于 ZSZ_1。这些差异可能是两个品种对涝害反应不同的原因。因此,本研究探讨了苎麻在涝胁迫下的形态生理响应,并确定了相关的分子机制,为改良苎麻品种和培育新品种提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Physiology and Biochemistry
Plant Physiology and Biochemistry 生物-植物科学
CiteScore
11.10
自引率
3.10%
发文量
410
审稿时长
33 days
期刊介绍: Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement. Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB. Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信