A “poor-man’s” deformation plasticity based approach to topology optimization of elastoplastic structures

IF 3.4 3区 工程技术 Q1 MECHANICS
Kai Li , Mathias Wallin , Matti Ristinmaa , Gengdong Cheng
{"title":"A “poor-man’s” deformation plasticity based approach to topology optimization of elastoplastic structures","authors":"Kai Li ,&nbsp;Mathias Wallin ,&nbsp;Matti Ristinmaa ,&nbsp;Gengdong Cheng","doi":"10.1016/j.ijsolstr.2024.113056","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a topology optimization framework utilizing a deformation plasticity model to approximate the isotropic hardening von-Mises incremental elastoplasticity model under monotone proportional loading. One advantage of the model is that it is based on a yield surface allowing for precise matching to uniaxial elastoplastic isotropic hardening response. The deformation plasticity model and the incremental plasticity model coincides for proportional loading and since the deformation plasticity model is path-independent, the computational cost and implementation complexity reduce significantly compared to the conventional incremental elastoplasticity. To investigate the deformation plasticity model combined with topology optimization, we compare three common elastoplastic optimization objectives: stiffness, strain energy and plastic work. The possibility to limit the peak local plastic work while maximizing the strain energy is also investigated. The consistent analytical sensitivity analysis which only requires the terminal state is derived using adjoint method. Numerical examples demonstrate that the proportionality assumption is reasonable and the deformation plasticity model combined with topology optimization is a competitive alternative to cumbersome incremental elastoplasticity.</p></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":"305 ","pages":"Article 113056"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020768324004153","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a topology optimization framework utilizing a deformation plasticity model to approximate the isotropic hardening von-Mises incremental elastoplasticity model under monotone proportional loading. One advantage of the model is that it is based on a yield surface allowing for precise matching to uniaxial elastoplastic isotropic hardening response. The deformation plasticity model and the incremental plasticity model coincides for proportional loading and since the deformation plasticity model is path-independent, the computational cost and implementation complexity reduce significantly compared to the conventional incremental elastoplasticity. To investigate the deformation plasticity model combined with topology optimization, we compare three common elastoplastic optimization objectives: stiffness, strain energy and plastic work. The possibility to limit the peak local plastic work while maximizing the strain energy is also investigated. The consistent analytical sensitivity analysis which only requires the terminal state is derived using adjoint method. Numerical examples demonstrate that the proportionality assumption is reasonable and the deformation plasticity model combined with topology optimization is a competitive alternative to cumbersome incremental elastoplasticity.

基于 "穷人 "变形塑性的弹塑性结构拓扑优化方法
本文提出了一个拓扑优化框架,利用变形塑性模型来近似单调比例加载下的各向同性硬化 von-Mises 增量弹塑性模型。该模型的优点之一是以屈服面为基础,可精确匹配单轴弹塑性各向同性硬化响应。变形塑性模型和增量塑性模型在比例加载时是一致的,而且由于变形塑性模型与路径无关,因此与传统的增量弹塑性模型相比,计算成本和实施复杂性大大降低。为了研究与拓扑优化相结合的变形塑性模型,我们比较了三种常见的弹塑性优化目标:刚度、应变能和塑性功。我们还研究了在最大化应变能的同时限制局部塑性功峰值的可能性。通过使用邻接法,得出了一致的分析灵敏度分析,该分析只需要终端状态。数值示例表明,比例假设是合理的,而且变形塑性模型与拓扑优化相结合,可替代繁琐的增量弹塑性模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
8.30%
发文量
405
审稿时长
70 days
期刊介绍: The International Journal of Solids and Structures has as its objective the publication and dissemination of original research in Mechanics of Solids and Structures as a field of Applied Science and Engineering. It fosters thus the exchange of ideas among workers in different parts of the world and also among workers who emphasize different aspects of the foundations and applications of the field. Standing as it does at the cross-roads of Materials Science, Life Sciences, Mathematics, Physics and Engineering Design, the Mechanics of Solids and Structures is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from the more classical problems of structural analysis to mechanics of solids continually interacting with other media and including fracture, flow, wave propagation, heat transfer, thermal effects in solids, optimum design methods, model analysis, structural topology and numerical techniques. Interest extends to both inorganic and organic solids and structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信