Simultaneous space–time Hermite wavelet method for time-fractional nonlinear weakly singular integro-partial differential equations

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Sudarshan Santra, Ratikanta Behera
{"title":"Simultaneous space–time Hermite wavelet method for time-fractional nonlinear weakly singular integro-partial differential equations","authors":"Sudarshan Santra,&nbsp;Ratikanta Behera","doi":"10.1016/j.cnsns.2024.108324","DOIUrl":null,"url":null,"abstract":"<div><p>An innovative simultaneous space–time Hermite wavelet method has been developed to solve weakly singular fractional-order nonlinear integro-partial differential equations in one and two dimensions with a focus whose solutions are intermittent in both space and time. The proposed method is based on multi-dimensional Hermite wavelets and the quasilinearization technique. The simultaneous space–time approach does not fully exploit for time-fractional nonlinear weakly singular integro-partial differential equations. Subsequently, the convergence analysis is challenging when the solution depends on the entire time domain (including past and future time), and the governing equation is combined with Volterra and Fredholm integral operators. Considering these challenges, we use the quasilinearization technique to handle the nonlinearity of the problem and reconstruct it to a linear integro-partial differential equation with second-order accuracy. Then, we apply multi-dimensional Hermite wavelets as attractive candidates on the resulting linearized problems to effectively resolve the initial weak singularity at <span><math><mrow><mi>t</mi><mo>=</mo><mn>0</mn></mrow></math></span>. In addition, the collocation method is used to determine the tensor-based wavelet coefficients within the decomposition domain. We elaborate on constructing the proposed simultaneous space–time Hermite wavelet method and design comprehensive algorithms for their implementation. Specifically, we emphasize the convergence analysis in the framework of the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm and indicate high accuracy dependent on the regularity of the solution. The stability of the proposed wavelet-based numerical approximation is also discussed in the context of fractional-order nonlinear integro-partial differential equations involving both Volterra and Fredholm operators with weakly singular kernels. The proposed method is compared with existing methods available in the literature. Specifically, we highlighted its high accuracy and compared it with a recently developed hybrid numerical approach and finite difference methods. The efficiency and accuracy of the proposed method are demonstrated by solving several highly intermittent time-fractional nonlinear weakly singular integro-partial differential equations.</p></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1007570424005094/pdfft?md5=02a1ddb04e33f46e3e9933ecc0361897&pid=1-s2.0-S1007570424005094-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424005094","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

An innovative simultaneous space–time Hermite wavelet method has been developed to solve weakly singular fractional-order nonlinear integro-partial differential equations in one and two dimensions with a focus whose solutions are intermittent in both space and time. The proposed method is based on multi-dimensional Hermite wavelets and the quasilinearization technique. The simultaneous space–time approach does not fully exploit for time-fractional nonlinear weakly singular integro-partial differential equations. Subsequently, the convergence analysis is challenging when the solution depends on the entire time domain (including past and future time), and the governing equation is combined with Volterra and Fredholm integral operators. Considering these challenges, we use the quasilinearization technique to handle the nonlinearity of the problem and reconstruct it to a linear integro-partial differential equation with second-order accuracy. Then, we apply multi-dimensional Hermite wavelets as attractive candidates on the resulting linearized problems to effectively resolve the initial weak singularity at t=0. In addition, the collocation method is used to determine the tensor-based wavelet coefficients within the decomposition domain. We elaborate on constructing the proposed simultaneous space–time Hermite wavelet method and design comprehensive algorithms for their implementation. Specifically, we emphasize the convergence analysis in the framework of the L2 norm and indicate high accuracy dependent on the regularity of the solution. The stability of the proposed wavelet-based numerical approximation is also discussed in the context of fractional-order nonlinear integro-partial differential equations involving both Volterra and Fredholm operators with weakly singular kernels. The proposed method is compared with existing methods available in the literature. Specifically, we highlighted its high accuracy and compared it with a recently developed hybrid numerical approach and finite difference methods. The efficiency and accuracy of the proposed method are demonstrated by solving several highly intermittent time-fractional nonlinear weakly singular integro-partial differential equations.

时分数非线性弱奇异整分微分方程的同步时空赫米特小波方法
我们开发了一种创新的时空同步赫米特小波方法,用于求解一维和二维的弱奇异分数阶非线性整偏微分方程,重点是其解在空间和时间上都是间歇性的。所提出的方法基于多维 Hermite 小波和准线性化技术。时空同步方法并不能完全适用于时分式非线性弱奇异积分偏微分方程。因此,当求解依赖于整个时域(包括过去和未来时间),并且支配方程与 Volterra 和 Fredholm 积分算子相结合时,收敛分析就具有挑战性。考虑到这些挑战,我们使用准线性化技术来处理问题的非线性,并将其重构为具有二阶精度的线性整偏微分方程。然后,我们将多维 Hermite 小波作为有吸引力的候选小波应用于线性化问题,以有效解决 t=0 处的初始弱奇异性。我们详细阐述了所提出的同步时空赫米特小波方法的构造,并为其实现设计了综合算法。我们特别强调了 L2 准则框架下的收敛分析,并指出高精度取决于解的正则性。我们还在涉及 Volterra 和 Fredholm 算子与弱奇异核的分数阶非线性整偏微分方程的背景下,讨论了所提出的基于小波的数值逼近方法的稳定性。我们将所提出的方法与文献中现有的方法进行了比较。具体而言,我们强调了该方法的高精度,并将其与最近开发的混合数值方法和有限差分方法进行了比较。通过求解几个高度间歇的时间分数非线性弱奇异整分微分方程,证明了所提方法的效率和精确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Nonlinear Science and Numerical Simulation
Communications in Nonlinear Science and Numerical Simulation MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
6.80
自引率
7.70%
发文量
378
审稿时长
78 days
期刊介绍: The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity. The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged. Topics of interest: Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity. No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信