Explicit exponential Runge–Kutta methods for semilinear time-fractional integro-differential equations

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Jun Zhou , Hao Zhang , Mengmeng Liu , Da Xu
{"title":"Explicit exponential Runge–Kutta methods for semilinear time-fractional integro-differential equations","authors":"Jun Zhou ,&nbsp;Hao Zhang ,&nbsp;Mengmeng Liu ,&nbsp;Da Xu","doi":"10.1016/j.cnsns.2024.108332","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we consider and analyze explicit exponential Runge–Kutta methods for solving semilinear time-fractional integro-differential equation, which involves two nonlocal terms in time. Firstly, the temporal Runge–Kutta discretizations follow the idea of exponential integrators. Subsequently, we utilize the spectral Galerkin method to introduce a fully discrete scheme. Then, we mainly focus on discussing the one-stage and two-stage methods for solving the proposed semilinear problem. Based on special abstract settings, we perform the convergence analysis for the proposed two different stage methods. In this process, we heavily use estimates about the operator family <span><math><mrow><mo>{</mo><mover><mrow><mi>S</mi></mrow><mrow><mo>̃</mo></mrow></mover><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>}</mo></mrow></math></span>, and in combination with Lipschitz continuous condition. Finally, some numerical experiments confirm theoretical results. Meanwhile, applying this scheme to the related linear problem yields high-order convergence, highlighting the advantages of explicit exponential Runge–Kutta methods.</p></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1007570424005173/pdfft?md5=66d620e3c2a13d80a83205fe51950d69&pid=1-s2.0-S1007570424005173-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424005173","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we consider and analyze explicit exponential Runge–Kutta methods for solving semilinear time-fractional integro-differential equation, which involves two nonlocal terms in time. Firstly, the temporal Runge–Kutta discretizations follow the idea of exponential integrators. Subsequently, we utilize the spectral Galerkin method to introduce a fully discrete scheme. Then, we mainly focus on discussing the one-stage and two-stage methods for solving the proposed semilinear problem. Based on special abstract settings, we perform the convergence analysis for the proposed two different stage methods. In this process, we heavily use estimates about the operator family {S̃(t)}, and in combination with Lipschitz continuous condition. Finally, some numerical experiments confirm theoretical results. Meanwhile, applying this scheme to the related linear problem yields high-order convergence, highlighting the advantages of explicit exponential Runge–Kutta methods.

半线性时分数积分微分方程的显式指数 Runge-Kutta 方法
在这项工作中,我们考虑并分析了用于求解半线性时分数积分微分方程的显式指数 Runge-Kutta 方法,该方程涉及两个非局部时间项。首先,时间 Runge-Kutta 离散化遵循指数积分器的思想。随后,我们利用谱 Galerkin 方法引入完全离散方案。然后,我们主要讨论了求解所提半线性问题的一步法和两步法。基于特殊的抽象设置,我们对所提出的两种不同阶段的方法进行了收敛性分析。在此过程中,我们大量使用了关于算子族 {S̃(t)} 的估计值,并结合了 Lipschitz 连续条件。最后,一些数值实验证实了理论结果。同时,将这一方案应用于相关线性问题会产生高阶收敛,突出了显式指数 Runge-Kutta 方法的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Nonlinear Science and Numerical Simulation
Communications in Nonlinear Science and Numerical Simulation MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
6.80
自引率
7.70%
发文量
378
审稿时长
78 days
期刊介绍: The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity. The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged. Topics of interest: Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity. No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信