{"title":"Oncogenic-tsRNA: A novel diagnostic and therapeutic molecule for cancer clinic.","authors":"Lin Chen, Yao Wu, Qi Tang, Faqing Tang","doi":"10.7150/jca.98656","DOIUrl":null,"url":null,"abstract":"<p><p>tsRNA (tRNA-derived small RNA) is derived from mature tRNA or precursor tRNA (pre-tRNAs). It is lately found that tsRNA's aberrant expression is associated with tumor occurrence and development, it may be used a molecule of diagnosis and therapy. Based on the cleavage position of pre-tRNAs or mature tRNAs, tsRNAs are classified into two categories: tRNA-derived fragments (tRFs) and tRNA halves (also named tiRNAs or tRHs). tsRNAs display more stability within cells, tissues, and peripheral blood than other small non-coding RNAs (sncRNAs), and play a role of stable entities that function in various biological contexts, thus, they may serve as functional molecules in human disease. Recently, tsRNAs have been found in a large number of tumors including such as lung cancer, breast cancer, gastric cancer, colorectal cancer, liver cancer, and prostate cancer. Although the biological function of tsRNAs is still poorly understood, increasing evidences have indicated that tsRNAs have a great significance and potential in early tumor screening and diagnosis, therapeutic targets and application, and prognosis. In the present review, we mainly describe tsRNAs in tumors and their potential clinical value in early screening and diagnosis, therapeutic targets and application, and prognosis, it provides theoretical support and guidance for further revealing the therapeutic potential of tsRNAs in tumor.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11375551/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.7150/jca.98656","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
tsRNA (tRNA-derived small RNA) is derived from mature tRNA or precursor tRNA (pre-tRNAs). It is lately found that tsRNA's aberrant expression is associated with tumor occurrence and development, it may be used a molecule of diagnosis and therapy. Based on the cleavage position of pre-tRNAs or mature tRNAs, tsRNAs are classified into two categories: tRNA-derived fragments (tRFs) and tRNA halves (also named tiRNAs or tRHs). tsRNAs display more stability within cells, tissues, and peripheral blood than other small non-coding RNAs (sncRNAs), and play a role of stable entities that function in various biological contexts, thus, they may serve as functional molecules in human disease. Recently, tsRNAs have been found in a large number of tumors including such as lung cancer, breast cancer, gastric cancer, colorectal cancer, liver cancer, and prostate cancer. Although the biological function of tsRNAs is still poorly understood, increasing evidences have indicated that tsRNAs have a great significance and potential in early tumor screening and diagnosis, therapeutic targets and application, and prognosis. In the present review, we mainly describe tsRNAs in tumors and their potential clinical value in early screening and diagnosis, therapeutic targets and application, and prognosis, it provides theoretical support and guidance for further revealing the therapeutic potential of tsRNAs in tumor.