Overexpression of Kdm6b induces testicular differentiation in a temperature-dependent sex determination system.

IF 4 1区 生物学 Q1 ZOOLOGY
Qiran Chen, Wei Sun, Lin Jin, Yingjie Zhou, Fang Li, Chutian Ge
{"title":"Overexpression of <i>Kdm6b</i> induces testicular differentiation in a temperature-dependent sex determination system.","authors":"Qiran Chen, Wei Sun, Lin Jin, Yingjie Zhou, Fang Li, Chutian Ge","doi":"10.24272/j.issn.2095-8137.2024.186","DOIUrl":null,"url":null,"abstract":"<p><p>In reptiles, such as the red-eared slider turtle ( <i>Trachemys scripta elegans</i>), gonadal sex determination is highly dependent on the environmental temperature during embryonic stages. This complex process, which leads to differentiation into either testes or ovaries, is governed by the finely tuned expression of upstream genes, notably the testis-promoting gene <i>Dmrt1</i> and the ovary-promoting gene <i>Foxl2</i>. Recent studies have identified epigenetic regulation as a crucial factor in testis development, with the H3K27me3 demethylase KDM6B being essential for <i>Dmrt1</i> expression in <i>T. s. elegans.</i> However, whether KDM6B alone can induce testicular differentiation remains unclear. In this study, we found that overexpression of <i>Kdm6b</i> in <i>T. s. elegans</i> embryos induced the male development pathway, accompanied by a rapid increase in the gonadal expression of <i>Dmrt1</i> at 31°C, a temperature typically resulting in female development. Notably, this sex reversal could be entirely rescued by <i>Dmrt1</i> knockdown. These findings demonstrate that <i>Kdm6b</i> is sufficient for commitment to the male pathway, underscoring its role as a critical epigenetic regulator in the sex determination of the red-eared slider turtle.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"45 5","pages":"1108-1115"},"PeriodicalIF":4.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491778/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoological Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.24272/j.issn.2095-8137.2024.186","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In reptiles, such as the red-eared slider turtle ( Trachemys scripta elegans), gonadal sex determination is highly dependent on the environmental temperature during embryonic stages. This complex process, which leads to differentiation into either testes or ovaries, is governed by the finely tuned expression of upstream genes, notably the testis-promoting gene Dmrt1 and the ovary-promoting gene Foxl2. Recent studies have identified epigenetic regulation as a crucial factor in testis development, with the H3K27me3 demethylase KDM6B being essential for Dmrt1 expression in T. s. elegans. However, whether KDM6B alone can induce testicular differentiation remains unclear. In this study, we found that overexpression of Kdm6b in T. s. elegans embryos induced the male development pathway, accompanied by a rapid increase in the gonadal expression of Dmrt1 at 31°C, a temperature typically resulting in female development. Notably, this sex reversal could be entirely rescued by Dmrt1 knockdown. These findings demonstrate that Kdm6b is sufficient for commitment to the male pathway, underscoring its role as a critical epigenetic regulator in the sex determination of the red-eared slider turtle.

在温度依赖性决定性别系统中,Kdm6b的过表达可诱导睾丸分化。
在爬行动物(如红耳滑龟)中,性腺的性别决定高度依赖于胚胎期的环境温度。这一导致分化为睾丸或卵巢的复杂过程受上游基因(尤其是睾丸促进基因 Dmrt1 和卵巢促进基因 Foxl2)表达的微调控制。最近的研究发现,表观遗传调控是睾丸发育的一个关键因素,H3K27me3 去甲基化酶 KDM6B 对于秀丽隐杆线虫中 Dmrt1 的表达至关重要。然而,KDM6B是否能单独诱导睾丸分化仍不清楚。在这项研究中,我们发现过量表达 Kdm6b 会诱导 elegans 胚胎进入雄性发育途径,同时在 31 摄氏度(通常会导致雌性发育的温度)下,Dmrt1 的性腺表达量会迅速增加。值得注意的是,这种性别逆转完全可以通过敲除 Dmrt1 来挽救。这些研究结果表明,Kdm6b足以让红耳滑龟进入雄性发育途径,突出了它在红耳滑龟性别决定过程中作为关键表观遗传调节因子的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Zoological Research
Zoological Research Medicine-General Medicine
CiteScore
7.60
自引率
10.20%
发文量
1937
审稿时长
8 weeks
期刊介绍: Established in 1980, Zoological Research (ZR) is a bimonthly publication produced by Kunming Institute of Zoology, the Chinese Academy of Sciences, and the China Zoological Society. It publishes peer-reviewed original research article/review/report/note/letter to the editor/editorial in English on Primates and Animal Models, Conservation and Utilization of Animal Resources, and Animal Diversity and Evolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信