Raphael Loll-Krippleber, Yangyang Kate Jiang, Grant W Brown
{"title":"pSPObooster: A Plasmid System to Improve Sporulation Efficiency of Saccharomyces cerevisiae Lab Strains.","authors":"Raphael Loll-Krippleber, Yangyang Kate Jiang, Grant W Brown","doi":"10.1002/yea.3978","DOIUrl":null,"url":null,"abstract":"<p><p>Common Saccharomyces cerevisiae lab yeast strains derived from S288C have meiotic defects and therefore are poor sporulators. Here, we developed a plasmid system containing corrected alleles of the MKT1 and RME1 genes to rescue the meiotic defects and show that standard BY4741 and BY4742 strains containing the plasmid display faster and more efficient sporulation. The plasmid, pSPObooster, can be maintained as an episome and easily cured or stably integrated into the genome at a single locus. We demonstrate the use of pSPObooster in low- and high-throughput yeast genetic manipulations and show that it can expedite both procedures without impacting strain behavior.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yeast","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/yea.3978","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/9 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Common Saccharomyces cerevisiae lab yeast strains derived from S288C have meiotic defects and therefore are poor sporulators. Here, we developed a plasmid system containing corrected alleles of the MKT1 and RME1 genes to rescue the meiotic defects and show that standard BY4741 and BY4742 strains containing the plasmid display faster and more efficient sporulation. The plasmid, pSPObooster, can be maintained as an episome and easily cured or stably integrated into the genome at a single locus. We demonstrate the use of pSPObooster in low- and high-throughput yeast genetic manipulations and show that it can expedite both procedures without impacting strain behavior.
期刊介绍:
Yeast publishes original articles and reviews on the most significant developments of research with unicellular fungi, including innovative methods of broad applicability. It is essential reading for those wishing to keep up to date with this rapidly moving field of yeast biology.
Topics covered include: biochemistry and molecular biology; biodiversity and taxonomy; biotechnology; cell and developmental biology; ecology and evolution; genetics and genomics; metabolism and physiology; pathobiology; synthetic and systems biology; tools and resources