Growth mechanism of 2D heterostructures of polypyrrole grown on TiO2 nanoribbons for high-performance supercapacitors.

IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Abeer Enaiet Allah, Fatma Mohamed
{"title":"Growth mechanism of 2D heterostructures of polypyrrole grown on TiO<sub>2</sub> nanoribbons for high-performance supercapacitors.","authors":"Abeer Enaiet Allah, Fatma Mohamed","doi":"10.1039/d4na00121d","DOIUrl":null,"url":null,"abstract":"<p><p>The patterning of functional structures is crucial in the field of materials science. Despite the enticing nature of two-dimensional surfaces, the task of directly modeling them with regular structures remains a significant challenge. Here we present a novel method to pattern a two-dimensional polymer in a controlled way assisted by chemical polymerization, which is confirmed through discernible observation. The fabrication process involves <i>in situ</i> polymerization to create 2D layers of polypyrrole (PPy) on extended 2D TiO<sub>2</sub> nanoribbons, resulting in oriented arrays known as 2D PPy/TiO<sub>2</sub>. These arrays exhibit enhanced electrochemical performance, making them ideal for supercapacitor applications. The skeleton structure of this material is distinctive, characterized by a homogeneous distribution of layers containing various elements. Additionally, it possesses a large contact surface, which effectively reduces the distance for ion transport and electron transfer. The 2D PPy/TiO<sub>2</sub> electrode has a maximum specific capacitance of 280 F g<sup>-1</sup> at an applied current density of 0.5 A g<sup>-1</sup>. Moreover, it demonstrates excellent rate capability and cycling stability. Therefore, this approach will open an avenue for improving polymerization-based patterning toward recommended applications.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11376071/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4na00121d","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The patterning of functional structures is crucial in the field of materials science. Despite the enticing nature of two-dimensional surfaces, the task of directly modeling them with regular structures remains a significant challenge. Here we present a novel method to pattern a two-dimensional polymer in a controlled way assisted by chemical polymerization, which is confirmed through discernible observation. The fabrication process involves in situ polymerization to create 2D layers of polypyrrole (PPy) on extended 2D TiO2 nanoribbons, resulting in oriented arrays known as 2D PPy/TiO2. These arrays exhibit enhanced electrochemical performance, making them ideal for supercapacitor applications. The skeleton structure of this material is distinctive, characterized by a homogeneous distribution of layers containing various elements. Additionally, it possesses a large contact surface, which effectively reduces the distance for ion transport and electron transfer. The 2D PPy/TiO2 electrode has a maximum specific capacitance of 280 F g-1 at an applied current density of 0.5 A g-1. Moreover, it demonstrates excellent rate capability and cycling stability. Therefore, this approach will open an avenue for improving polymerization-based patterning toward recommended applications.

Abstract Image

生长在二氧化钛纳米带上的聚吡咯二维异质结构的生长机理,用于高性能超级电容器。
功能结构的图案化在材料科学领域至关重要。尽管二维表面具有诱人的性质,但直接用规则结构对其进行建模仍是一项重大挑战。在这里,我们提出了一种新方法,通过化学聚合的辅助,以可控的方式为二维聚合物绘制图案,并通过可辨别的观察加以证实。制造过程包括原位聚合,在延伸的二维二氧化钛纳米带上制造二维聚吡咯(PPy)层,形成定向阵列,即二维 PPy/二氧化钛。这些阵列具有更强的电化学性能,是超级电容器应用的理想材料。这种材料的骨架结构与众不同,其特点是含有各种元素的层均匀分布。此外,它还具有较大的接触面,可有效缩短离子传输和电子转移的距离。在电流密度为 0.5 A g-1 时,二维 PPy/TiO2 电极的最大比电容为 280 F g-1。此外,它还具有出色的速率能力和循环稳定性。因此,这种方法将为改进基于聚合的图案化、实现推荐应用开辟一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Advances
Nanoscale Advances Multiple-
CiteScore
8.00
自引率
2.10%
发文量
461
审稿时长
9 weeks
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信