Amjaad Muhammad Ar Reshaid, Yasser Abdulathim Alshawakir, Mohammed A Almuayrifi, Omar Salem Al-Attas, Ahmed S BaHammam, Reem Abdullah Al Khalifah
{"title":"The Impact of Light-Dark Cycle Alteration on the Acceleration of Type 1 Diabetes in NOD Mice Model.","authors":"Amjaad Muhammad Ar Reshaid, Yasser Abdulathim Alshawakir, Mohammed A Almuayrifi, Omar Salem Al-Attas, Ahmed S BaHammam, Reem Abdullah Al Khalifah","doi":"10.2147/NSS.S465917","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>We aimed to evaluate the effect of light-dark cycle alteration and soft drink consumption on the acceleration of type 1 diabetes mellitus (T1DM) development among non-obese diabetic (NOD) mice model.</p><p><strong>Methods: </strong>We exposed female NOD and C57BL/6 mice from the age of 5 weeks to either adlib soft drink consumption and/or T20 light-dark cycle alteration until the development of diabetes, or the mice reached the age of 30 weeks. Each group consisted of 7-15 mice. We monitored weight, length, blood glucose level, and insulin autoantibody (IAA) levels weekly.</p><p><strong>Results: </strong>Out of 75 NOD and 22 C57BL/6 mice, 41 NOD mice developed diabetes, and 6 mice died between 7 and 8 weeks of age. The mean time to development of T1DM among NOD control mice was 20 weeks. The time to development of T1DM was accelerated by two weeks in the NOD mice exposed to light-dark cycle alteration, hazard ratio of 2.65,95th CI (0.70, 10.04) p = 0.15). The other groups developed T1DM, similar to the control group.</p><p><strong>Conclusion: </strong>There was a trend toward earlier development of T1DM among NOD mice exposed to light-dark cycle alteration, but this difference was not statistically significant. Further studies are needed to confirm our findings using larger sample sizes and different animal species.</p>","PeriodicalId":18896,"journal":{"name":"Nature and Science of Sleep","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378784/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature and Science of Sleep","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/NSS.S465917","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: We aimed to evaluate the effect of light-dark cycle alteration and soft drink consumption on the acceleration of type 1 diabetes mellitus (T1DM) development among non-obese diabetic (NOD) mice model.
Methods: We exposed female NOD and C57BL/6 mice from the age of 5 weeks to either adlib soft drink consumption and/or T20 light-dark cycle alteration until the development of diabetes, or the mice reached the age of 30 weeks. Each group consisted of 7-15 mice. We monitored weight, length, blood glucose level, and insulin autoantibody (IAA) levels weekly.
Results: Out of 75 NOD and 22 C57BL/6 mice, 41 NOD mice developed diabetes, and 6 mice died between 7 and 8 weeks of age. The mean time to development of T1DM among NOD control mice was 20 weeks. The time to development of T1DM was accelerated by two weeks in the NOD mice exposed to light-dark cycle alteration, hazard ratio of 2.65,95th CI (0.70, 10.04) p = 0.15). The other groups developed T1DM, similar to the control group.
Conclusion: There was a trend toward earlier development of T1DM among NOD mice exposed to light-dark cycle alteration, but this difference was not statistically significant. Further studies are needed to confirm our findings using larger sample sizes and different animal species.
期刊介绍:
Nature and Science of Sleep is an international, peer-reviewed, open access journal covering all aspects of sleep science and sleep medicine, including the neurophysiology and functions of sleep, the genetics of sleep, sleep and society, biological rhythms, dreaming, sleep disorders and therapy, and strategies to optimize healthy sleep.
Specific topics covered in the journal include:
The functions of sleep in humans and other animals
Physiological and neurophysiological changes with sleep
The genetics of sleep and sleep differences
The neurotransmitters, receptors and pathways involved in controlling both sleep and wakefulness
Behavioral and pharmacological interventions aimed at improving sleep, and improving wakefulness
Sleep changes with development and with age
Sleep and reproduction (e.g., changes across the menstrual cycle, with pregnancy and menopause)
The science and nature of dreams
Sleep disorders
Impact of sleep and sleep disorders on health, daytime function and quality of life
Sleep problems secondary to clinical disorders
Interaction of society with sleep (e.g., consequences of shift work, occupational health, public health)
The microbiome and sleep
Chronotherapy
Impact of circadian rhythms on sleep, physiology, cognition and health
Mechanisms controlling circadian rhythms, centrally and peripherally
Impact of circadian rhythm disruptions (including night shift work, jet lag and social jet lag) on sleep, physiology, cognition and health
Behavioral and pharmacological interventions aimed at reducing adverse effects of circadian-related sleep disruption
Assessment of technologies and biomarkers for measuring sleep and/or circadian rhythms
Epigenetic markers of sleep or circadian disruption.