Jelena Repac, Bojan Božić, Biljana Božić Nedeljković
{"title":"Cutibacterium acnes as an overseen autoimmunity trigger: Unearthing heat-shock driven molecular mimicry.","authors":"Jelena Repac, Bojan Božić, Biljana Božić Nedeljković","doi":"10.1016/j.micinf.2024.105420","DOIUrl":null,"url":null,"abstract":"<p><p>Cutibacterium acnes, common resident of the human skin, can establish both commensal and pathogenic relations with the human host; however, long-term consequences of C. acnes-induced inflammation remained un(der)explored. To infer the capacity of triggering autoimmunity in humans via molecular mimicry, a comprehensive immunoinformatics analysis of the experimentally characterized C. acnes proteome was performed. The protocol included homology screening between the C. acnes and the human proteome, and validation of shared specificity regions against the collection of experimentally characterized T-cell epitopes, related to autoimmunity. To obtain highly reliable predictions, the results were subjected to additional cross-validation by a dedicated MHC-restriction analysis, including a docking study of C. acnes mimotopes and human counterparts with the highest degree of sequence similarity to MHCII molecules representing the highest risk for detected autoimmune pathologies. Due to mimicking of highly immunogenic, but also evolutionary conserved autoantigens from the Heat Shock protein family, association between C. acnes and the pathogenesis of highly incident autoimmune diseases: Type 1 Diabetes, Rheumatoid Arthritis, and Juvenile Idiopathic Arthritis, was found. To the best of our knowledge, this study is the first one to provide preliminary information and a mechanistic link on the putative involvement of C. acnes in the pathogenesis of autoimmunity in humans.</p>","PeriodicalId":18497,"journal":{"name":"Microbes and Infection","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbes and Infection","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.micinf.2024.105420","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cutibacterium acnes, common resident of the human skin, can establish both commensal and pathogenic relations with the human host; however, long-term consequences of C. acnes-induced inflammation remained un(der)explored. To infer the capacity of triggering autoimmunity in humans via molecular mimicry, a comprehensive immunoinformatics analysis of the experimentally characterized C. acnes proteome was performed. The protocol included homology screening between the C. acnes and the human proteome, and validation of shared specificity regions against the collection of experimentally characterized T-cell epitopes, related to autoimmunity. To obtain highly reliable predictions, the results were subjected to additional cross-validation by a dedicated MHC-restriction analysis, including a docking study of C. acnes mimotopes and human counterparts with the highest degree of sequence similarity to MHCII molecules representing the highest risk for detected autoimmune pathologies. Due to mimicking of highly immunogenic, but also evolutionary conserved autoantigens from the Heat Shock protein family, association between C. acnes and the pathogenesis of highly incident autoimmune diseases: Type 1 Diabetes, Rheumatoid Arthritis, and Juvenile Idiopathic Arthritis, was found. To the best of our knowledge, this study is the first one to provide preliminary information and a mechanistic link on the putative involvement of C. acnes in the pathogenesis of autoimmunity in humans.
期刊介绍:
Microbes and Infection publishes 10 peer-reviewed issues per year in all fields of infection and immunity, covering the different levels of host-microbe interactions, and in particular:
the molecular biology and cell biology of the crosstalk between hosts (human and model organisms) and microbes (viruses, bacteria, parasites and fungi), including molecular virulence and evasion mechanisms.
the immune response to infection, including pathogenesis and host susceptibility.
emerging human infectious diseases.
systems immunology.
molecular epidemiology/genetics of host pathogen interactions.
microbiota and host "interactions".
vaccine development, including novel strategies and adjuvants.
Clinical studies, accounts of clinical trials and biomarker studies in infectious diseases are within the scope of the journal.
Microbes and Infection publishes articles on human pathogens or pathogens of model systems. However, articles on other microbes can be published if they contribute to our understanding of basic mechanisms of host-pathogen interactions. Purely descriptive and preliminary studies are discouraged.