Pingyu Ge, Hong Xie, Yinxue Guo, Hang Jin, Lan Chen, Zhichao Chen, Yan Liu
{"title":"Linoleyl acetate and mandenol alleviate HUA-induced ED via NLRP3 inflammasome and JAK2/STAT3 signalling conduction in rats","authors":"Pingyu Ge, Hong Xie, Yinxue Guo, Hang Jin, Lan Chen, Zhichao Chen, Yan Liu","doi":"10.1111/jcmm.70075","DOIUrl":null,"url":null,"abstract":"<p>Hyperuricemia (HUA) is characterized by elevated blood uric acid levels, which can increase the risk of erectile dysfunction (ED). Clinical studies have demonstrated satisfactory efficacy of a traditional Chinese medicine formula QYHT decoction in improving ED. Furthermore, the main monomeric components of this formula, linoleyl acetate and mandenol, demonstrate promise in the treatment of ED. This study established an ED rat model induced by HUA and the animals were administered with linoleyl acetate and mandenol. HE and TUNEL were performed to detect tissue changes, ELISA to measure the levels of serum testosterone (T), MDA, NO, CRP, and TNF-α and qPCR and WB to assess the expression levels of NLRP3, ASC, Caspase-1, JAK2, and STAT3 in whole blood. The findings showed that linoleyl acetate and mandenol improved kidney tissue morphology, reduced cell apoptosis in penile tissue, significantly increased T and NO levels, while substantially decreasing levels of MDA, CRP, and TNF-α. Meanwhile, the expression of NLRP3, ASC, and Caspase-1 mRNAs and proteins was markedly reduced, and the phosphorylation of JAK2 and STAT3 was inhibited. These findings were further validated through faecal microbiota transplantation results. Taken together, linoleyl acetate and mandenol could inhibit NLRP3 inflammasome activation, reduce inflammatory and oxidative stress responses, suppress the activity of JAK–STAT signalling pathway, ultimately providing a potential treatment for HUA-induced ED.</p>","PeriodicalId":101321,"journal":{"name":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.70075","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Hyperuricemia (HUA) is characterized by elevated blood uric acid levels, which can increase the risk of erectile dysfunction (ED). Clinical studies have demonstrated satisfactory efficacy of a traditional Chinese medicine formula QYHT decoction in improving ED. Furthermore, the main monomeric components of this formula, linoleyl acetate and mandenol, demonstrate promise in the treatment of ED. This study established an ED rat model induced by HUA and the animals were administered with linoleyl acetate and mandenol. HE and TUNEL were performed to detect tissue changes, ELISA to measure the levels of serum testosterone (T), MDA, NO, CRP, and TNF-α and qPCR and WB to assess the expression levels of NLRP3, ASC, Caspase-1, JAK2, and STAT3 in whole blood. The findings showed that linoleyl acetate and mandenol improved kidney tissue morphology, reduced cell apoptosis in penile tissue, significantly increased T and NO levels, while substantially decreasing levels of MDA, CRP, and TNF-α. Meanwhile, the expression of NLRP3, ASC, and Caspase-1 mRNAs and proteins was markedly reduced, and the phosphorylation of JAK2 and STAT3 was inhibited. These findings were further validated through faecal microbiota transplantation results. Taken together, linoleyl acetate and mandenol could inhibit NLRP3 inflammasome activation, reduce inflammatory and oxidative stress responses, suppress the activity of JAK–STAT signalling pathway, ultimately providing a potential treatment for HUA-induced ED.
期刊介绍:
The Journal of Cellular and Molecular Medicine serves as a bridge between physiology and cellular medicine, as well as molecular biology and molecular therapeutics. With a 20-year history, the journal adopts an interdisciplinary approach to showcase innovative discoveries.
It publishes research aimed at advancing the collective understanding of the cellular and molecular mechanisms underlying diseases. The journal emphasizes translational studies that translate this knowledge into therapeutic strategies. Being fully open access, the journal is accessible to all readers.