{"title":"Lysyl Oxidase (LOX) Family Proteins: Key Players in Breast Cancer Occurrence and Progression.","authors":"Jinsong Li, Xinmeng Wang, Ruai Liu, Jiaji Zi, Yihan Li, Zhengliang Li, Wei Xiong","doi":"10.7150/jca.98688","DOIUrl":null,"url":null,"abstract":"<p><p>The lysyl oxidase (LOX) family proteins are secreted copper-dependent amine oxidases, comprised of five paralogues: LOX and LOX-like 1-4 (LOXL1-4), which are characterized by catalytic activity contributing to the remodeling of the cross-linking of the structural extracellular matrix (ECM). ECM remodeling plays a key role in the angiogenesis surrounding tumours, whereby a corrupt tumour microenvironment (TME) takes shape. Additionally, dysregulation and aberrant expression of LOX family proteins have been implicated in the occurrence and progression of various types of human cancers, including lung cancer, hepatocellular carcinoma, gastric cancer, renal cell carcinoma, and colorectal cancer. Breast cancer is the most prevalent malignant tumour in women worldwide, and its incidence rate is increasing annually. In recent years, a growing body of evidence has revealed significant upregulation of LOX family proteins in breast cancer, which contributes to cancer cell proliferation, invasion, and metastasis. Furthermore, elevated expression of LOX family proteins is closely associated with poor prognosis in breast cancer patients. We herein review the structure, regulation, function, and mechanisms of LOX family proteins in the occurrence and progression of breast cancer. In addition, we highlight recent insights into their mechanisms and their potential involvement in the clinical value and novel biological roles of LOX family members in tumour progression and the TME of breast cancer. This review will provide a theoretical basis and reference for clinical diagnosis and treatment of breast cancer, as well as for the screening of effective LOX-specific inhibitors.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11375560/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.7150/jca.98688","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The lysyl oxidase (LOX) family proteins are secreted copper-dependent amine oxidases, comprised of five paralogues: LOX and LOX-like 1-4 (LOXL1-4), which are characterized by catalytic activity contributing to the remodeling of the cross-linking of the structural extracellular matrix (ECM). ECM remodeling plays a key role in the angiogenesis surrounding tumours, whereby a corrupt tumour microenvironment (TME) takes shape. Additionally, dysregulation and aberrant expression of LOX family proteins have been implicated in the occurrence and progression of various types of human cancers, including lung cancer, hepatocellular carcinoma, gastric cancer, renal cell carcinoma, and colorectal cancer. Breast cancer is the most prevalent malignant tumour in women worldwide, and its incidence rate is increasing annually. In recent years, a growing body of evidence has revealed significant upregulation of LOX family proteins in breast cancer, which contributes to cancer cell proliferation, invasion, and metastasis. Furthermore, elevated expression of LOX family proteins is closely associated with poor prognosis in breast cancer patients. We herein review the structure, regulation, function, and mechanisms of LOX family proteins in the occurrence and progression of breast cancer. In addition, we highlight recent insights into their mechanisms and their potential involvement in the clinical value and novel biological roles of LOX family members in tumour progression and the TME of breast cancer. This review will provide a theoretical basis and reference for clinical diagnosis and treatment of breast cancer, as well as for the screening of effective LOX-specific inhibitors.