{"title":"Genetic Adaptations and Mechanistic Insights Into Bacterial Bioremediation in Ecosystems","authors":"Yamini Vinayagam, Vijayarangan Devi Rajeswari","doi":"10.1002/jobm.202400387","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Metal pollution poses significant threats to the ecosystem and human health, demanding effective remediation strategies. Bioremediation, which leverages the unique metal-resistant genes found in bacteria, offers a cost-effective and efficient solution to heavy metal contamination. Genes such as Cad, Chr, Cop, and others provide pathways to improve the detoxification of the ecosystem. Through multiple techniques, genetic engineering makes bacterial genomes more capable of improving metal detoxification; nonetheless, there are still unanswered questions regarding the nature of new metal-resistant genes. This article examines bacteria's complex processes to detoxify toxic metals, including biosorption, bioaccumulation, bio-precipitation, and bioleaching. It also explores essential genes, proteins, signaling mechanisms, and bacterial biomarkers involved in breaking toxic metals.</p>\n </div>","PeriodicalId":15101,"journal":{"name":"Journal of Basic Microbiology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Basic Microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jobm.202400387","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Metal pollution poses significant threats to the ecosystem and human health, demanding effective remediation strategies. Bioremediation, which leverages the unique metal-resistant genes found in bacteria, offers a cost-effective and efficient solution to heavy metal contamination. Genes such as Cad, Chr, Cop, and others provide pathways to improve the detoxification of the ecosystem. Through multiple techniques, genetic engineering makes bacterial genomes more capable of improving metal detoxification; nonetheless, there are still unanswered questions regarding the nature of new metal-resistant genes. This article examines bacteria's complex processes to detoxify toxic metals, including biosorption, bioaccumulation, bio-precipitation, and bioleaching. It also explores essential genes, proteins, signaling mechanisms, and bacterial biomarkers involved in breaking toxic metals.
期刊介绍:
The Journal of Basic Microbiology (JBM) publishes primary research papers on both procaryotic and eucaryotic microorganisms, including bacteria, archaea, fungi, algae, protozoans, phages, viruses, viroids and prions.
Papers published deal with:
microbial interactions (pathogenic, mutualistic, environmental),
ecology,
physiology,
genetics and cell biology/development,
new methodologies, i.e., new imaging technologies (e.g. video-fluorescence microscopy, modern TEM applications)
novel molecular biology methods (e.g. PCR-based gene targeting or cassettes for cloning of GFP constructs).