Efficient production of phenyllactic acid in Escherichia coli via metabolic engineering and fermentation optimization strategies.

IF 4 2区 生物学 Q2 MICROBIOLOGY
Frontiers in Microbiology Pub Date : 2024-08-23 eCollection Date: 2024-01-01 DOI:10.3389/fmicb.2024.1457628
Weibin Wu, Maosen Chen, Chenxi Li, Jie Zhong, Rusheng Xie, Zhibin Pan, Junhan Lin, Feng Qi
{"title":"Efficient production of phenyllactic acid in <i>Escherichia coli</i> via metabolic engineering and fermentation optimization strategies.","authors":"Weibin Wu, Maosen Chen, Chenxi Li, Jie Zhong, Rusheng Xie, Zhibin Pan, Junhan Lin, Feng Qi","doi":"10.3389/fmicb.2024.1457628","DOIUrl":null,"url":null,"abstract":"<p><p>Phenyllactic acid (PhLA), an important natural organic acid, can be used as a biopreservative, monomer of the novel polymeric material poly (phenyllactic acid), and raw material for various medicines. Herein, we achieved a high-level production of PhLA in <i>Escherichia coli</i> through the application of metabolic engineering and fermentation optimization strategies. First, the PhLA biosynthetic pathway was established in <i>E. coli</i> CGSC4510, and the phenylalanine biosynthetic pathway was disrupted to improve the carbon flux toward PhLA biosynthesis. Then, we increased the copy number of the key genes involved in the synthesis of the PhLA precursor phenylpyruvic acid. Concurrently, we disrupted the tryptophan biosynthetic pathway and enhanced the availability of phosphoenolpyruvate and erythrose 4-phosphate, thereby constructing the genetically engineered strain MG-P10. This strain was capable of producing 1.42 ± 0.02 g/L PhLA through shake flask fermentation. Furthermore, after optimizing the dissolved oxygen feedback feeding process and other conditions, the PhLA yield reached 52.89 ± 0.25 g/L in a 6 L fermenter. This study successfully utilized metabolic engineering and fermentation optimization strategies to lay a foundation for efficient PhLA production in <i>E. coli</i> as an industrial application.</p>","PeriodicalId":12466,"journal":{"name":"Frontiers in Microbiology","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377314/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmicb.2024.1457628","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Phenyllactic acid (PhLA), an important natural organic acid, can be used as a biopreservative, monomer of the novel polymeric material poly (phenyllactic acid), and raw material for various medicines. Herein, we achieved a high-level production of PhLA in Escherichia coli through the application of metabolic engineering and fermentation optimization strategies. First, the PhLA biosynthetic pathway was established in E. coli CGSC4510, and the phenylalanine biosynthetic pathway was disrupted to improve the carbon flux toward PhLA biosynthesis. Then, we increased the copy number of the key genes involved in the synthesis of the PhLA precursor phenylpyruvic acid. Concurrently, we disrupted the tryptophan biosynthetic pathway and enhanced the availability of phosphoenolpyruvate and erythrose 4-phosphate, thereby constructing the genetically engineered strain MG-P10. This strain was capable of producing 1.42 ± 0.02 g/L PhLA through shake flask fermentation. Furthermore, after optimizing the dissolved oxygen feedback feeding process and other conditions, the PhLA yield reached 52.89 ± 0.25 g/L in a 6 L fermenter. This study successfully utilized metabolic engineering and fermentation optimization strategies to lay a foundation for efficient PhLA production in E. coli as an industrial application.

通过代谢工程和发酵优化策略在大肠杆菌中高效生产苯乳酸。
苯乳酸(PhLA)是一种重要的天然有机酸,可用作生物防腐剂、新型高分子材料聚(苯乳酸)的单体和各种药物的原料。在本文中,我们通过应用代谢工程和发酵优化策略,在大肠杆菌中实现了高水平的PhLA生产。首先,在大肠杆菌CGSC4510中建立了PhLA的生物合成途径,并破坏了苯丙氨酸的生物合成途径,以提高PhLA生物合成的碳通量。然后,我们增加了参与 PhLA 前体苯丙酮酸合成的关键基因的拷贝数。同时,我们破坏了色氨酸的生物合成途径,提高了磷酸烯醇丙酮酸和 4-磷酸赤藓糖的可用性,从而构建了基因工程菌株 MG-P10。通过摇瓶发酵,该菌株能够产生 1.42 ± 0.02 g/L 的磷酸腺苷。此外,在优化了溶氧反馈进料过程和其他条件后,在 6 L 发酵罐中的 PhLA 产量达到了 52.89 ± 0.25 g/L。这项研究成功地利用了代谢工程和发酵优化策略,为大肠杆菌高效生产 PhLA 的工业应用奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
9.60%
发文量
4837
审稿时长
14 weeks
期刊介绍: Frontiers in Microbiology is a leading journal in its field, publishing rigorously peer-reviewed research across the entire spectrum of microbiology. Field Chief Editor Martin G. Klotz at Washington State University is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信