Deterministic processes influence bacterial more than fungal community assembly during the development of biological soil crusts in the desert ecosystem.
{"title":"Deterministic processes influence bacterial more than fungal community assembly during the development of biological soil crusts in the desert ecosystem.","authors":"Hong Zhou, Ke Yu, Chunfang Deng, Bo Wu, Ying Gao","doi":"10.3389/fmicb.2024.1404602","DOIUrl":null,"url":null,"abstract":"<p><p>Biological soil crusts (biocrusts) constitute a crucial biological component of the soil surface in arid and semi-arid ecosystems. Understanding the variations in soil microbial community assembly across biocrust successional stages is essential for a deeper comprehension of microbial biodiversity and desert ecosystem functioning. However, knowledge about the mechanisms of microbial community assembly and the factors influencing its development remains limited. In this study, we utilized amplicons sequencing to assess the compositions of bacterial and fungal communities in bare sand and three types of biocrusts (light cyanobacterial biocrusts, dark cyanobacterial biocrusts, and moss crusts). Subsequently, we analyzed the ecological processes shaping microbial community composition and structure, along with the influencing factors. Our results revealed a significant increase in bacterial diversity and no significant changes in fungal diversity during biocrust development. The relative abundances of the copiotrophic bacteria (e.g., Actinobacteria, Acidobacteria, and Bacteroidetes) showed significant increases, while oligotrophic bacteria (e.g., Proteobacteria and Firmicutes) decreased over time. Moreover, the relative abundances of Ascomycota, which exhibit strong resistance to adverse environmental conditions, significantly decreased, whereas Basidiomycota, known for their ability to degrade lignin, significantly increased throughout biocrust development. Additionally, stochastic processes (dispersal limitation and drift) predominantly drove the assemblies of both bacterial and fungal communities. However, the relative importance of deterministic processes (homogeneous selection) in bacterial assembly increased during biocrust development. Structural equation modeling indicated that bacterial community assembly was primarily related to soil water content, whereas fungal community assembly was primarily related to total organic carbon. These findings provide a scientific foundation for investigating the formation and development of biocrusts, and further insights into the conservation and sustainable management of biocrust resources under future climate change scenarios.</p>","PeriodicalId":12466,"journal":{"name":"Frontiers in Microbiology","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377341/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmicb.2024.1404602","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Biological soil crusts (biocrusts) constitute a crucial biological component of the soil surface in arid and semi-arid ecosystems. Understanding the variations in soil microbial community assembly across biocrust successional stages is essential for a deeper comprehension of microbial biodiversity and desert ecosystem functioning. However, knowledge about the mechanisms of microbial community assembly and the factors influencing its development remains limited. In this study, we utilized amplicons sequencing to assess the compositions of bacterial and fungal communities in bare sand and three types of biocrusts (light cyanobacterial biocrusts, dark cyanobacterial biocrusts, and moss crusts). Subsequently, we analyzed the ecological processes shaping microbial community composition and structure, along with the influencing factors. Our results revealed a significant increase in bacterial diversity and no significant changes in fungal diversity during biocrust development. The relative abundances of the copiotrophic bacteria (e.g., Actinobacteria, Acidobacteria, and Bacteroidetes) showed significant increases, while oligotrophic bacteria (e.g., Proteobacteria and Firmicutes) decreased over time. Moreover, the relative abundances of Ascomycota, which exhibit strong resistance to adverse environmental conditions, significantly decreased, whereas Basidiomycota, known for their ability to degrade lignin, significantly increased throughout biocrust development. Additionally, stochastic processes (dispersal limitation and drift) predominantly drove the assemblies of both bacterial and fungal communities. However, the relative importance of deterministic processes (homogeneous selection) in bacterial assembly increased during biocrust development. Structural equation modeling indicated that bacterial community assembly was primarily related to soil water content, whereas fungal community assembly was primarily related to total organic carbon. These findings provide a scientific foundation for investigating the formation and development of biocrusts, and further insights into the conservation and sustainable management of biocrust resources under future climate change scenarios.
期刊介绍:
Frontiers in Microbiology is a leading journal in its field, publishing rigorously peer-reviewed research across the entire spectrum of microbiology. Field Chief Editor Martin G. Klotz at Washington State University is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.