Hoyoung Jung, Jean Oh, Kirk A J Stephenson, Aaron W Joe, Zaid N Mammo
{"title":"Prompt engineering with ChatGPT3.5 and GPT4 to improve patient education on retinal diseases.","authors":"Hoyoung Jung, Jean Oh, Kirk A J Stephenson, Aaron W Joe, Zaid N Mammo","doi":"10.1016/j.jcjo.2024.08.010","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To assess the effect of prompt engineering on the accuracy, comprehensiveness, readability, and empathy of large language model (LLM)-generated responses to patient questions regarding retinal disease.</p><p><strong>Design: </strong>Prospective qualitative study.</p><p><strong>Participants: </strong>Retina specialists, ChatGPT3.5, and GPT4.</p><p><strong>Methods: </strong>Twenty common patient questions regarding 5 retinal conditions were inputted to ChatGPT3.5 and GPT4 as a stand-alone question or preceded by an optimized prompt (prompt A) or preceded by prompt A with specified limits to length and grade reading level (prompt B). Accuracy and comprehensiveness were graded by 3 retina specialists on a Likert scale from 1 to 5 (1: very poor to 5: very good). Readability of responses was assessed using Readable.com, an online readability tool.</p><p><strong>Results: </strong>There were no significant differences between ChatGPT3.5 and GPT4 across any of the metrics tested. Median accuracy of responses to a stand-alone question, prompt A, and prompt B questions were 5.0, 5.0, and 4.0, respectively. Median comprehensiveness of responses to a stand-alone question, prompt A, and prompt B questions were 5.0, 5.0, and 4.0, respectively. The use of prompt B was associated with a lower accuracy and comprehensiveness than responses to stand-alone question or prompt A questions (p < 0.001). Average-grade reading level of responses across both LLMs were 13.45, 11.5, and 10.3 for a stand-alone question, prompt A, and prompt B questions, respectively (p < 0.001).</p><p><strong>Conclusions: </strong>Prompt engineering can significantly improve readability of LLM-generated responses, although at the cost of reducing accuracy and comprehensiveness. Further study is needed to understand the utility and bioethical implications of LLMs as a patient educational resource.</p>","PeriodicalId":9606,"journal":{"name":"Canadian journal of ophthalmology. Journal canadien d'ophtalmologie","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian journal of ophthalmology. Journal canadien d'ophtalmologie","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jcjo.2024.08.010","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To assess the effect of prompt engineering on the accuracy, comprehensiveness, readability, and empathy of large language model (LLM)-generated responses to patient questions regarding retinal disease.
Design: Prospective qualitative study.
Participants: Retina specialists, ChatGPT3.5, and GPT4.
Methods: Twenty common patient questions regarding 5 retinal conditions were inputted to ChatGPT3.5 and GPT4 as a stand-alone question or preceded by an optimized prompt (prompt A) or preceded by prompt A with specified limits to length and grade reading level (prompt B). Accuracy and comprehensiveness were graded by 3 retina specialists on a Likert scale from 1 to 5 (1: very poor to 5: very good). Readability of responses was assessed using Readable.com, an online readability tool.
Results: There were no significant differences between ChatGPT3.5 and GPT4 across any of the metrics tested. Median accuracy of responses to a stand-alone question, prompt A, and prompt B questions were 5.0, 5.0, and 4.0, respectively. Median comprehensiveness of responses to a stand-alone question, prompt A, and prompt B questions were 5.0, 5.0, and 4.0, respectively. The use of prompt B was associated with a lower accuracy and comprehensiveness than responses to stand-alone question or prompt A questions (p < 0.001). Average-grade reading level of responses across both LLMs were 13.45, 11.5, and 10.3 for a stand-alone question, prompt A, and prompt B questions, respectively (p < 0.001).
Conclusions: Prompt engineering can significantly improve readability of LLM-generated responses, although at the cost of reducing accuracy and comprehensiveness. Further study is needed to understand the utility and bioethical implications of LLMs as a patient educational resource.
期刊介绍:
Official journal of the Canadian Ophthalmological Society.
The Canadian Journal of Ophthalmology (CJO) is the official journal of the Canadian Ophthalmological Society and is committed to timely publication of original, peer-reviewed ophthalmology and vision science articles.