CD8+ tissue-resident memory T cells are essential in bleomycin-induced pulmonary fibrosis.

IF 5 2区 生物学 Q2 CELL BIOLOGY
Xiao Feng, Fan Yu, Xin-Liang He, Pei-Pei Cheng, Qian Niu, Li-Qin Zhao, Qian Li, Xiao-Lin Cui, Zi-Heng Jia, Shu-Yi Ye, Li-Mei Liang, Lin-Jie Song, Liang Xiong, Fei Xiang, Xiao-Rong Wang, Wan-Li Ma, Hong Ye
{"title":"CD8<sup>+</sup> tissue-resident memory T cells are essential in bleomycin-induced pulmonary fibrosis.","authors":"Xiao Feng, Fan Yu, Xin-Liang He, Pei-Pei Cheng, Qian Niu, Li-Qin Zhao, Qian Li, Xiao-Lin Cui, Zi-Heng Jia, Shu-Yi Ye, Li-Mei Liang, Lin-Jie Song, Liang Xiong, Fei Xiang, Xiao-Rong Wang, Wan-Li Ma, Hong Ye","doi":"10.1152/ajpcell.00368.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Human tissue-resident memory T (T<sub>RM</sub>) cells play a crucial role in protecting the body from infections and cancers. Recent research observed increased numbers of T<sub>RM</sub> cells in the lung tissues of idiopathic pulmonary fibrosis patient. However, the functional consequences of T<sub>RM</sub> cells in pulmonary fibrosis remain unclear. Here, we found that the numbers of T<sub>RM</sub> cells, especially the CD8<sup>+</sup> subset, were increased in the mouse lung with bleomycin-induced pulmonary fibrosis. Increasing or decreasing CD8<sup>+</sup> T<sub>RM</sub> cells in mouse lungs accordingly altered the severity of fibrosis. In addition, adoptive transfer of CD8<sup>+</sup> T cells containing a large number of CD8<sup>+</sup> T<sub>RM</sub> cells from fibrotic lungs was sufficient to induce pulmonary fibrosis in control mice. Treatment with CCL18 to induced CD8<sup>+</sup> T<sub>RM</sub> cell expansion and exacerbated fibrosis, while blocking CCR8 prevented CD8<sup>+</sup> T<sub>RM</sub> recruitment and inhibited pulmonary fibrosis. In conclusion, CD8<sup>+</sup> T<sub>RM</sub> cells are essential for bleomycin-induced pulmonary fibrosis, and targeting CCL18/CCR8/CD8<sup>+</sup> T<sub>RM</sub> cells may be a potential therapeutic approach.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.00368.2024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Human tissue-resident memory T (TRM) cells play a crucial role in protecting the body from infections and cancers. Recent research observed increased numbers of TRM cells in the lung tissues of idiopathic pulmonary fibrosis patient. However, the functional consequences of TRM cells in pulmonary fibrosis remain unclear. Here, we found that the numbers of TRM cells, especially the CD8+ subset, were increased in the mouse lung with bleomycin-induced pulmonary fibrosis. Increasing or decreasing CD8+ TRM cells in mouse lungs accordingly altered the severity of fibrosis. In addition, adoptive transfer of CD8+ T cells containing a large number of CD8+ TRM cells from fibrotic lungs was sufficient to induce pulmonary fibrosis in control mice. Treatment with CCL18 to induced CD8+ TRM cell expansion and exacerbated fibrosis, while blocking CCR8 prevented CD8+ TRM recruitment and inhibited pulmonary fibrosis. In conclusion, CD8+ TRM cells are essential for bleomycin-induced pulmonary fibrosis, and targeting CCL18/CCR8/CD8+ TRM cells may be a potential therapeutic approach.

CD8+组织驻留记忆T细胞对博莱霉素诱导的肺纤维化至关重要
人体组织驻留记忆 T 细胞(TRM)在保护机体免受感染和癌症侵害方面发挥着至关重要的作用。最近的研究发现,特发性肺纤维化患者肺组织中的TRM细胞数量有所增加。然而,TRM细胞在肺纤维化中的功能性后果仍不清楚。在这里,我们发现在博莱霉素诱导的肺纤维化小鼠肺中,TRM细胞,尤其是CD8+亚群的数量有所增加。增加或减少小鼠肺中的CD8+TRM细胞可相应地改变肺纤维化的严重程度。此外,从肺纤维化小鼠肺中收养转移含有大量CD8+TRM细胞的CD8+T细胞足以诱导对照组小鼠肺纤维化。用CCL18处理可诱导CD8+TRM细胞扩增并加剧肺纤维化,而阻断CCR8可阻止CD8+TRM招募并抑制肺纤维化。总之,CD8+ TRM细胞对博莱霉素诱导的肺纤维化至关重要,靶向CCL18/CCR8/CD8+ TRM细胞可能是一种潜在的治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
1.80%
发文量
252
审稿时长
1 months
期刊介绍: The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信