The Protective Effect of GnRH Agonist Triptorelin on the Histomorphometric Parameters of the Utero-ovarian Tissue in the Doxorubicin- and Cyclophosphamide-treated Mice.

IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Soghra Bahmanpour, Negin Ameri, Nehleh Zareifard, Fatemeh Karimi
{"title":"The Protective Effect of GnRH Agonist Triptorelin on the Histomorphometric Parameters of the Utero-ovarian Tissue in the Doxorubicin- and Cyclophosphamide-treated Mice.","authors":"Soghra Bahmanpour, Negin Ameri, Nehleh Zareifard, Fatemeh Karimi","doi":"10.1007/s12013-024-01487-3","DOIUrl":null,"url":null,"abstract":"<p><p>One of the common side effects of chemotherapy drugs is ovarian failure and uterine dysfunction, which can occur after the administration of doxorubicin and/or cyclophosphamide. In clinics, gonadotropin-releasing hormone agonists (GnRHa) are used to modulate the toxic effect of chemotherapy and intercept infertility with some controversy and limited histological knowledge. This study aimed to evaluate the serological and histological features of protective effects of triptorelin, (GnRHa), on utero-ovarian tissue in the mice treated with cyclophosphamide and/or doxorubicin. Forty-eight female BALB/c mice were randomly divided into 8 groups as follows: Group I: normal saline; Group II: triptorelin; Group III: cyclophosphamide; Group IV: doxorubicin; Group V: cyclophosphamide + doxorubicin; and Groups VI, VII, and VIII: after injection of cyclophosphamide, doxorubicin, or cyclophosphamide + doxorubicin, administration of triptorelin (1 mg/kg; intraperitoneally) for 15 consecutive days, respectively. On the 21st day, the ovaries and uterine horns were dissected and weighed. Then, tissue processing and staining were performed for further histological and stereological studies. Triptorelin treatment in the damaged groups significantly increased the number of primordial and pre-antral follicles and granulosa cells. It decreased the number of atretic follicles compared to cyclophosphamide and/or doxorubicin-treated groups (P < 0.05). Triptorelin also significantly improved the volume of the ovary, cortex, medulla, oocytes in the primordial and antral follicles, uterus, endometrium, myometrium, uterine glands, and endometrial blood vessels in the damaged groups (P < 0.05). Triptorelin treatment prevents the destructive effects of cyclophosphamide and/or doxorubicin on utero-ovarian tissue.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-024-01487-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

One of the common side effects of chemotherapy drugs is ovarian failure and uterine dysfunction, which can occur after the administration of doxorubicin and/or cyclophosphamide. In clinics, gonadotropin-releasing hormone agonists (GnRHa) are used to modulate the toxic effect of chemotherapy and intercept infertility with some controversy and limited histological knowledge. This study aimed to evaluate the serological and histological features of protective effects of triptorelin, (GnRHa), on utero-ovarian tissue in the mice treated with cyclophosphamide and/or doxorubicin. Forty-eight female BALB/c mice were randomly divided into 8 groups as follows: Group I: normal saline; Group II: triptorelin; Group III: cyclophosphamide; Group IV: doxorubicin; Group V: cyclophosphamide + doxorubicin; and Groups VI, VII, and VIII: after injection of cyclophosphamide, doxorubicin, or cyclophosphamide + doxorubicin, administration of triptorelin (1 mg/kg; intraperitoneally) for 15 consecutive days, respectively. On the 21st day, the ovaries and uterine horns were dissected and weighed. Then, tissue processing and staining were performed for further histological and stereological studies. Triptorelin treatment in the damaged groups significantly increased the number of primordial and pre-antral follicles and granulosa cells. It decreased the number of atretic follicles compared to cyclophosphamide and/or doxorubicin-treated groups (P < 0.05). Triptorelin also significantly improved the volume of the ovary, cortex, medulla, oocytes in the primordial and antral follicles, uterus, endometrium, myometrium, uterine glands, and endometrial blood vessels in the damaged groups (P < 0.05). Triptorelin treatment prevents the destructive effects of cyclophosphamide and/or doxorubicin on utero-ovarian tissue.

Abstract Image

GnRH激动剂曲普瑞林对多柔比星和环磷酰胺治疗小鼠子宫卵巢组织形态参数的保护作用
化疗药物的常见副作用之一是卵巢功能衰竭和子宫功能障碍,这可能在使用多柔比星和/或环磷酰胺后发生。在临床上,促性腺激素释放激素激动剂(GnRHa)被用于调节化疗的毒性作用和阻断不孕症,但存在一些争议,组织学知识也有限。本研究旨在评估三苯氧胺(GnRHa)对环磷酰胺和/或多柔比星治疗小鼠子宫卵巢组织保护作用的血清学和组织学特征。将 48 只雌性 BALB/c 小鼠随机分为以下 8 组:I组:正常生理盐水;II组:三肽素;III组:环磷酰胺;IV组:多柔比星;V组:环磷酰胺+多柔比星;VI、VII和VIII组:在注射环磷酰胺、多柔比星或环磷酰胺+多柔比星后,分别连续15天腹腔注射三肽素(1 mg/kg)。第 21 天,解剖卵巢和子宫角并称重。然后进行组织处理和染色,以进一步进行组织学和立体学研究。经曲普瑞林处理的受损组原始卵泡、前胚乳卵泡和颗粒细胞的数量明显增加。与环磷酰胺和/或多柔比星处理组相比,它减少了闭锁卵泡的数量(P<0.05)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Biochemistry and Biophysics
Cell Biochemistry and Biophysics 生物-生化与分子生物学
CiteScore
4.40
自引率
0.00%
发文量
72
审稿时长
7.5 months
期刊介绍: Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized. Examples of subject areas that CBB publishes are: · biochemical and biophysical aspects of cell structure and function; · interactions of cells and their molecular/macromolecular constituents; · innovative developments in genetic and biomolecular engineering; · computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies; · photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信