Five Volts Lithium Batteries with Advanced Carbonate-Based Electrolytes: A Rational Design via a Trio-Functional Addon Materials.

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Fuming Zhang, Peng Zhang, Wenhua Zhang, Pedro R Gonzalez, Daniel Q Tan, Yair Ein-Eli
{"title":"Five Volts Lithium Batteries with Advanced Carbonate-Based Electrolytes: A Rational Design via a Trio-Functional Addon Materials.","authors":"Fuming Zhang, Peng Zhang, Wenhua Zhang, Pedro R Gonzalez, Daniel Q Tan, Yair Ein-Eli","doi":"10.1002/adma.202410277","DOIUrl":null,"url":null,"abstract":"<p><p>Lithium metal batteries paired with high-voltage LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> (LNMO) cathodes are a promising energy storage source for achieving enhanced high energy density. Forming durable and robust solid-electrolyte interphase (SEI) and cathode-electrolyte interface (CEI) and the ability to withstand oxidation at high potentials are essential for long-lasting performance. Herein, advanced electrolytes are designed via trio-functional additives to carbonate-based electrolytes for 5 V Li||LNMO and graphite||LNMO cells achieving 88.3% capacity retention after 500 charge-discharge cycles. Theoretical calculations reveal that adding adiponitrile facilitates the presence of more hierarchical DFOB<sup>-</sup> and PF<sub>6</sub> <sup>-</sup> dual anion structure in the solvation sheath, leading to a faster de-solvation of the Li cation. By combining both fluorine and nitrile additives, an efficient synergistic effect is obtained, generating robust thin inorganic SEI and CEI films, respectively. These films enhance microstructural stability; Li dendrite growth on the Li electrode is being suppressed at the anode side and transition-metals dissolution from the cathode is being mitigated, as evidenced by cryo-transmission electron microscopy and synchrotron studies.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202410277","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium metal batteries paired with high-voltage LiNi0.5Mn1.5O4 (LNMO) cathodes are a promising energy storage source for achieving enhanced high energy density. Forming durable and robust solid-electrolyte interphase (SEI) and cathode-electrolyte interface (CEI) and the ability to withstand oxidation at high potentials are essential for long-lasting performance. Herein, advanced electrolytes are designed via trio-functional additives to carbonate-based electrolytes for 5 V Li||LNMO and graphite||LNMO cells achieving 88.3% capacity retention after 500 charge-discharge cycles. Theoretical calculations reveal that adding adiponitrile facilitates the presence of more hierarchical DFOB- and PF6 - dual anion structure in the solvation sheath, leading to a faster de-solvation of the Li cation. By combining both fluorine and nitrile additives, an efficient synergistic effect is obtained, generating robust thin inorganic SEI and CEI films, respectively. These films enhance microstructural stability; Li dendrite growth on the Li electrode is being suppressed at the anode side and transition-metals dissolution from the cathode is being mitigated, as evidenced by cryo-transmission electron microscopy and synchrotron studies.

Abstract Image

采用先进碳酸盐电解质的五伏特锂电池:通过三功能添加材料进行合理设计。
与高电压 LiNi0.5Mn1.5O4(LNMO)阴极配对的锂金属电池是一种很有前途的储能源,可实现更高的能量密度。形成耐用、坚固的固体电解质相间层(SEI)和阴极电解质界面(CEI)以及在高电位下承受氧化的能力是实现持久性能的关键。本文通过在碳酸盐基电解质中添加三重功能添加剂,设计出先进的电解质,用于 5 V 锂||LNMO 和石墨||LNMO 电池,在 500 次充放电循环后可实现 88.3% 的容量保持率。理论计算显示,添加己二腈有助于在溶解鞘中形成更多层次的 DFOB- 和 PF6- 双阴离子结构,从而加快锂阳离子的去溶解速度。通过结合使用氟和腈添加剂,可产生有效的协同效应,分别生成坚固的无机 SEI 和 CEI 薄膜。这些薄膜增强了微观结构的稳定性;在阳极侧,锂电极上的锂枝晶生长受到抑制,阴极的过渡金属溶解也得到缓解,这一点已通过冷冻透射电子显微镜和同步辐射研究得到证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信