Dipole Moment Modulation of Terminal Groups Enables Asymmetric Acceptors Featuring Medium Bandgap for Efficient and Stable Ternary Organic Solar Cells.
Bosen Zou, Anhai Liang, Pengbo Ding, Jia Yao, Xianghao Zeng, Hongxiang Li, Ruijie Ma, Chunliang Li, Weiwei Wu, Dezhang Chen, Memoona Qammar, Han Yu, Jicheng Yi, Liang Guo, Sai Ho Pun, Jonathan E Halpert, Gang Li, Zhipeng Kan, He Yan
{"title":"Dipole Moment Modulation of Terminal Groups Enables Asymmetric Acceptors Featuring Medium Bandgap for Efficient and Stable Ternary Organic Solar Cells.","authors":"Bosen Zou, Anhai Liang, Pengbo Ding, Jia Yao, Xianghao Zeng, Hongxiang Li, Ruijie Ma, Chunliang Li, Weiwei Wu, Dezhang Chen, Memoona Qammar, Han Yu, Jicheng Yi, Liang Guo, Sai Ho Pun, Jonathan E Halpert, Gang Li, Zhipeng Kan, He Yan","doi":"10.1002/anie.202415332","DOIUrl":null,"url":null,"abstract":"<p><p>This study puts forth a novel terminal group design to develop medium-band gap Y-series acceptors beyond conventional side-chain engineering. We focused on the strategical integration of an electron-donating methoxy group and an electron-withdrawing halogen atom at benzene-fused terminal groups. This combination precisely modulated the dipole moment and electron density of terminal groups, effectively attenuating intramolecular charge transfer effect, and widening the band gap of acceptors. The incorporation of these terminal groups yielded two asymmetric acceptors, named BTP-2FClO and BTP-2FBrO, both of which exhibited open-circuit voltage (V<sub>oc</sub>) as high as 0.96 V in binary devices, representing the highest V<sub>OC</sub>s among the asymmetric Y-series small molecule acceptors. More importantly, both BTP-2FClO and BTP-2FBrO exhibit modest aggregation behaviors and molecular crystallinity, making them suitable as a third component to mitigate excess aggregation of the PM6 : BTP-eC9 blend and optimize the devices' morphology. As a result, the optimized BTP-2FClO-based ternary organic solar cells (OSCs) achieved a remarkable power conversion efficiency (PCE) of 919.34 %, positioning it among the highest-performing OSCs. Our study highlights the molecular design importance on manipulating dipole moments and electron density in developing medium-band gap acceptors, and offers a highly efficient third component for high-performance ternary OSCs.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202415332","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study puts forth a novel terminal group design to develop medium-band gap Y-series acceptors beyond conventional side-chain engineering. We focused on the strategical integration of an electron-donating methoxy group and an electron-withdrawing halogen atom at benzene-fused terminal groups. This combination precisely modulated the dipole moment and electron density of terminal groups, effectively attenuating intramolecular charge transfer effect, and widening the band gap of acceptors. The incorporation of these terminal groups yielded two asymmetric acceptors, named BTP-2FClO and BTP-2FBrO, both of which exhibited open-circuit voltage (Voc) as high as 0.96 V in binary devices, representing the highest VOCs among the asymmetric Y-series small molecule acceptors. More importantly, both BTP-2FClO and BTP-2FBrO exhibit modest aggregation behaviors and molecular crystallinity, making them suitable as a third component to mitigate excess aggregation of the PM6 : BTP-eC9 blend and optimize the devices' morphology. As a result, the optimized BTP-2FClO-based ternary organic solar cells (OSCs) achieved a remarkable power conversion efficiency (PCE) of 919.34 %, positioning it among the highest-performing OSCs. Our study highlights the molecular design importance on manipulating dipole moments and electron density in developing medium-band gap acceptors, and offers a highly efficient third component for high-performance ternary OSCs.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.