Investigation into active-gate-driving performance and potential closed-loop controller implementations for silicon carbide MOSFET modules

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
İlker Şahin, Mason Parker, Ross Mathieson, Stephen Finney, Paul D. Judge
{"title":"Investigation into active-gate-driving performance and potential closed-loop controller implementations for silicon carbide MOSFET modules","authors":"İlker Şahin,&nbsp;Mason Parker,&nbsp;Ross Mathieson,&nbsp;Stephen Finney,&nbsp;Paul D. Judge","doi":"10.1049/pel2.12698","DOIUrl":null,"url":null,"abstract":"<p>Active gate driving (AGD) is a promising concept for achieving high-performance power transistor switching. This is particularly crucial for Silicon Carbide (SiC) MOSFETs since their inherently fast switching characteristics give rise to severe overshoots and oscillations which translate into increased levels of electromagnetic interference (EMI) emissions. In this paper, an AGD strategy using a single-pulse applied during the switching transient is considered for a 1200 V 400 A SiC MOSFET module. The effect of single-pulse timing, load current, and temperature on the switching performance is analyzed in detail. The radiated EMI reduction benefits are quantified by H-field and E-field probes. A conceptual closed-loop AGD approach is presented and compared to open-loop operation. For the transistor turn-off case under full load current of 400 A, experimental results show that it is possible to reduce voltage overshoot by 43.3%, voltage and current oscillations by 69.7% and 52.2% respectively, and EMI by 76.6%, with a trade-off in the switching energy by a relatively minor increase of 18.2%, compared to the conventional gate driving case. For the turn-on case, current overshoot was reduced by 32.7%, EMI by 52%, voltage and current oscillations by 54.6% and 52.8%, respectively, with a penalty of 50.9% increase in the switching loss.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/pel2.12698","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/pel2.12698","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Active gate driving (AGD) is a promising concept for achieving high-performance power transistor switching. This is particularly crucial for Silicon Carbide (SiC) MOSFETs since their inherently fast switching characteristics give rise to severe overshoots and oscillations which translate into increased levels of electromagnetic interference (EMI) emissions. In this paper, an AGD strategy using a single-pulse applied during the switching transient is considered for a 1200 V 400 A SiC MOSFET module. The effect of single-pulse timing, load current, and temperature on the switching performance is analyzed in detail. The radiated EMI reduction benefits are quantified by H-field and E-field probes. A conceptual closed-loop AGD approach is presented and compared to open-loop operation. For the transistor turn-off case under full load current of 400 A, experimental results show that it is possible to reduce voltage overshoot by 43.3%, voltage and current oscillations by 69.7% and 52.2% respectively, and EMI by 76.6%, with a trade-off in the switching energy by a relatively minor increase of 18.2%, compared to the conventional gate driving case. For the turn-on case, current overshoot was reduced by 32.7%, EMI by 52%, voltage and current oscillations by 54.6% and 52.8%, respectively, with a penalty of 50.9% increase in the switching loss.

Abstract Image

碳化硅 MOSFET 模块的主动栅极驱动性能和潜在闭环控制器实施研究
有源栅极驱动(AGD)是实现高性能功率晶体管开关的一个前景广阔的概念。这对于碳化硅(SiC)MOSFET 尤为重要,因为其固有的快速开关特性会产生严重的过冲和振荡,从而增加电磁干扰(EMI)辐射。本文针对 1200 V 400 A SiC MOSFET 模块,考虑了在开关瞬态期间使用单脉冲的 AGD 策略。本文详细分析了单脉冲定时、负载电流和温度对开关性能的影响。通过 H 场和 E 场探针对减少辐射 EMI 的好处进行了量化。介绍了一种概念性闭环 AGD 方法,并与开环操作进行了比较。对于满载电流为 400 A 的晶体管关断情况,实验结果表明,与传统的栅极驱动情况相比,可以将电压过冲降低 43.3%,电压和电流振荡分别降低 69.7% 和 52.2%,EMI 降低 76.6%,而开关能量只增加了相对较小的 18.2%。在开启情况下,电流过冲减少了 32.7%,电磁干扰减少了 52%,电压和电流振荡分别减少了 54.6% 和 52.8%,但开关损耗增加了 50.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信