{"title":"Study on gate-source voltage oscillation suppression in SiC MOSFETs based on LCR parallel branch","authors":"Changzhou Yu, Jiajia Li, Yukun Gu, Huixian Liu, Feng Xu, Yifei Wang, Shaolin Yu","doi":"10.1049/pel2.12714","DOIUrl":null,"url":null,"abstract":"<p>Silicon carbide (SiC) MOSFETs are garnering widespread attention due to their superior performance in high-temperature, high-frequency, and high-voltage applications, emerging as the preferred power semiconductor devices in converters for photovoltaic power generation and new energy vehicles. However, SiC MOSFETs are prone to gate drive and drain-source voltage oscillations during high-speed switching events, resulting in diminished system efficiency, increased electromagnetic interference, reduced device safety, and even compromising the overall reliability of the converter. This paper introduces an oscillation suppression method based on a gate LCR parallel branch, aimed at optimizing the switching performance of SiC MOSFETs. A half-bridge circuit model based on SiC MOSFET is established, and the mechanism of gate and drain-source oscillation is meticulously analysed using the transfer function expression. Building upon this, the LCR parallel branch parameters are meticulously designed to introduce appropriate damping in the gate drive path, effectively mitigating oscillations. Experimental results demonstrate that the proposed design not only significantly reduces the amplitude of oscillations but also shortens the switch-transition time. This enhancement effectively increases the switching frequency and reduces switching losses.</p>","PeriodicalId":56302,"journal":{"name":"IET Power Electronics","volume":"17 12","pages":"1507-1519"},"PeriodicalIF":1.7000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/pel2.12714","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Power Electronics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/pel2.12714","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Silicon carbide (SiC) MOSFETs are garnering widespread attention due to their superior performance in high-temperature, high-frequency, and high-voltage applications, emerging as the preferred power semiconductor devices in converters for photovoltaic power generation and new energy vehicles. However, SiC MOSFETs are prone to gate drive and drain-source voltage oscillations during high-speed switching events, resulting in diminished system efficiency, increased electromagnetic interference, reduced device safety, and even compromising the overall reliability of the converter. This paper introduces an oscillation suppression method based on a gate LCR parallel branch, aimed at optimizing the switching performance of SiC MOSFETs. A half-bridge circuit model based on SiC MOSFET is established, and the mechanism of gate and drain-source oscillation is meticulously analysed using the transfer function expression. Building upon this, the LCR parallel branch parameters are meticulously designed to introduce appropriate damping in the gate drive path, effectively mitigating oscillations. Experimental results demonstrate that the proposed design not only significantly reduces the amplitude of oscillations but also shortens the switch-transition time. This enhancement effectively increases the switching frequency and reduces switching losses.
期刊介绍:
IET Power Electronics aims to attract original research papers, short communications, review articles and power electronics related educational studies. The scope covers applications and technologies in the field of power electronics with special focus on cost-effective, efficient, power dense, environmental friendly and robust solutions, which includes:
Applications:
Electric drives/generators, renewable energy, industrial and consumable applications (including lighting, welding, heating, sub-sea applications, drilling and others), medical and military apparatus, utility applications, transport and space application, energy harvesting, telecommunications, energy storage management systems, home appliances.
Technologies:
Circuits: all type of converter topologies for low and high power applications including but not limited to: inverter, rectifier, dc/dc converter, power supplies, UPS, ac/ac converter, resonant converter, high frequency converter, hybrid converter, multilevel converter, power factor correction circuits and other advanced topologies.
Components and Materials: switching devices and their control, inductors, sensors, transformers, capacitors, resistors, thermal management, filters, fuses and protection elements and other novel low-cost efficient components/materials.
Control: techniques for controlling, analysing, modelling and/or simulation of power electronics circuits and complete power electronics systems.
Design/Manufacturing/Testing: new multi-domain modelling, assembling and packaging technologies, advanced testing techniques.
Environmental Impact: Electromagnetic Interference (EMI) reduction techniques, Electromagnetic Compatibility (EMC), limiting acoustic noise and vibration, recycling techniques, use of non-rare material.
Education: teaching methods, programme and course design, use of technology in power electronics teaching, virtual laboratory and e-learning and fields within the scope of interest.
Special Issues. Current Call for papers:
Harmonic Mitigation Techniques and Grid Robustness in Power Electronic-Based Power Systems - https://digital-library.theiet.org/files/IET_PEL_CFP_HMTGRPEPS.pdf