Turbulence Generation via Nonlinear Lee Wave Trailing Edge Instabilities in Kuroshio-Seamount Interactions

IF 3.3 2区 地球科学 Q1 OCEANOGRAPHY
Yu-Yu Yeh, Ming-Huei Chang, Ren-Chieh Lien, Jia-Xuan Chang, Jia-Lin Chen, Sen Jan, Yiing Jang Yang, Anda Vladoiu
{"title":"Turbulence Generation via Nonlinear Lee Wave Trailing Edge Instabilities in Kuroshio-Seamount Interactions","authors":"Yu-Yu Yeh,&nbsp;Ming-Huei Chang,&nbsp;Ren-Chieh Lien,&nbsp;Jia-Xuan Chang,&nbsp;Jia-Lin Chen,&nbsp;Sen Jan,&nbsp;Yiing Jang Yang,&nbsp;Anda Vladoiu","doi":"10.1029/2024JC020971","DOIUrl":null,"url":null,"abstract":"<p>Physical processes behind flow-topography interactions and turbulent transitions are essential for parameterization in numerical models. We examine how the Kuroshio cascades energy into turbulence upon passing over a seamount, employing a combination of shipboard measurements, tow-yo microstructure profiling, and high-resolution mooring. The seamount, spanning 5 km horizontally with two summits, interacts with the Kuroshio, whose flow speed ranges from 1 to 2 m s<sup>−1</sup>, modulated by tides. The forward energy cascade process is commenced by forming a train of 2–3 nonlinear lee waves behind the summit with a wavelength of 0.5–1 km and an amplitude of 50–100 m. A train of Kelvin-Helmholtz (KH) billows develops immediately below the lee waves and extends downstream, leading to enhanced turbulence. The turbulent kinetic energy dissipation rate is <i>O</i> (10<sup>−7</sup>–10<sup>−4</sup>) W kg<sup>−1</sup>, varying in phase with the upstream flow speed modulated by tides. KH billows occur primarily at the lee wave's trailing edge, where the combined strong downstream shear and low-stratification recirculation trigger the shear instability, <i>Ri</i> &lt; 1/4. The recirculation also creates an overturn susceptible to gravitational instability. This scenario resembles the rotor, commonly found in atmospheric mountain waves but rarely observed in the ocean. A linear stability analysis further suggests that critical levels, where the KH instability extracts energy from the mean flow, are located predominantly at the strong shear layer of the lee wave's upwelling portion, coinciding with the upper boundary of the rotor. These novel observations may provide insights into flow-topography interactions and improve physics-based turbulence parameterization.</p>","PeriodicalId":54340,"journal":{"name":"Journal of Geophysical Research-Oceans","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JC020971","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research-Oceans","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JC020971","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

Physical processes behind flow-topography interactions and turbulent transitions are essential for parameterization in numerical models. We examine how the Kuroshio cascades energy into turbulence upon passing over a seamount, employing a combination of shipboard measurements, tow-yo microstructure profiling, and high-resolution mooring. The seamount, spanning 5 km horizontally with two summits, interacts with the Kuroshio, whose flow speed ranges from 1 to 2 m s−1, modulated by tides. The forward energy cascade process is commenced by forming a train of 2–3 nonlinear lee waves behind the summit with a wavelength of 0.5–1 km and an amplitude of 50–100 m. A train of Kelvin-Helmholtz (KH) billows develops immediately below the lee waves and extends downstream, leading to enhanced turbulence. The turbulent kinetic energy dissipation rate is O (10−7–10−4) W kg−1, varying in phase with the upstream flow speed modulated by tides. KH billows occur primarily at the lee wave's trailing edge, where the combined strong downstream shear and low-stratification recirculation trigger the shear instability, Ri < 1/4. The recirculation also creates an overturn susceptible to gravitational instability. This scenario resembles the rotor, commonly found in atmospheric mountain waves but rarely observed in the ocean. A linear stability analysis further suggests that critical levels, where the KH instability extracts energy from the mean flow, are located predominantly at the strong shear layer of the lee wave's upwelling portion, coinciding with the upper boundary of the rotor. These novel observations may provide insights into flow-topography interactions and improve physics-based turbulence parameterization.

Abstract Image

黑潮与海山相互作用中通过非线性李波后缘不稳定性产生的湍流
流-地形相互作用和湍流转换背后的物理过程对数值模型的参数化至关重要。我们采用船上测量、拖曳微结构剖面测量和高分辨率系泊相结合的方法,研究了黑潮经过海山时如何将能量级联为湍流。海山横跨 5 公里,有两个山顶,与黑潮相互作用,黑潮的流速为 1 至 2 米/秒-1,受潮汐调节。前向能量级联过程开始时,会在山顶后方形成一列 2-3 个非线性利波,波长 0.5-1 千米,振幅 50-100 米。利波下方紧接着出现一列开尔文-赫姆霍兹(KH)波浪,并向下游延伸,导致湍流增强。湍流动能耗散率为 O (10-7-10-4) W kg-1,随潮汐调节的上游流速而变化。KH 波浪主要发生在利波的后缘,强大的下游切变和低平层再循环共同触发了切变不稳定性 Ri <1/4。再循环还产生了易受重力不稳定性影响的倾覆。这种情况类似于转子,常见于大气山波,但很少在海洋中观察到。线性稳定性分析进一步表明,KH 不稳定性从平均流中提取能量的临界水平主要位于利波上涌部分的强剪切层,与转子的上边界相吻合。这些新的观测结果可能有助于深入了解流-地形的相互作用,并改进基于物理学的湍流参数化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research-Oceans
Journal of Geophysical Research-Oceans Earth and Planetary Sciences-Oceanography
CiteScore
7.00
自引率
13.90%
发文量
429
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信