Local Empirical Modeling of NmF2 Using Ionosonde Observations and the FISM2 Solar EUV Model

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
D. Singh, L. P. Goncharenko, I. A. Galkin, P. C. Chamberlin, F. Redondo
{"title":"Local Empirical Modeling of NmF2 Using Ionosonde Observations and the FISM2 Solar EUV Model","authors":"D. Singh,&nbsp;L. P. Goncharenko,&nbsp;I. A. Galkin,&nbsp;P. C. Chamberlin,&nbsp;F. Redondo","doi":"10.1029/2024JA032697","DOIUrl":null,"url":null,"abstract":"<p>Local empirical models of the F2 layer peak electron density (NmF2) are developed for 43 low- middle latitude ionosonde stations using auto-scaled data from Lowell GIRO data center and manually scaled data from World Data Center for Ionosphere and Space Weather. Data coverage at these stations ranges from a few years to up to 6 decades. Flare Irradiance Spectral Model index version 2 (FISM2) and ap3 index are used to parametrize the solar extreme ultraviolet (EUV) flux and geomagnetic activity dependence of NmF2. Learning curves suggest that approximately 8 years of data coverage is required to constrain the solar activity dependence of NmF2. Output of local models altogether captures well known anomalies of the F2 ionospheric layer. Performance metrics demonstrate that the model parametrized using FISM2 has better accuracy than a similarly parametrized model with F10.7, as well as than the IRI-2020 model. Skill score metrics indicate that the FISM2 based model outperforms F10.7 model at all solar activity levels. The improved accuracy of model with FISM2 over F10.7 is due to better representation of solar rotation by FISM2, and due to its performance at solar extremum. Application of singular spectrum analysis to model output reveals that solar rotation contributes to about 2%–3% of the variance in NmF2 data and FISM2 based model, while F10.7 based models overestimate the strength of solar rotation to be at 4%–7%. At solar extremum, both F10.7-based model and IRI-2020 tend to overestimate the NmF2 while FISM2 provides the most accurate prediction out of three.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JA032697","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA032697","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Local empirical models of the F2 layer peak electron density (NmF2) are developed for 43 low- middle latitude ionosonde stations using auto-scaled data from Lowell GIRO data center and manually scaled data from World Data Center for Ionosphere and Space Weather. Data coverage at these stations ranges from a few years to up to 6 decades. Flare Irradiance Spectral Model index version 2 (FISM2) and ap3 index are used to parametrize the solar extreme ultraviolet (EUV) flux and geomagnetic activity dependence of NmF2. Learning curves suggest that approximately 8 years of data coverage is required to constrain the solar activity dependence of NmF2. Output of local models altogether captures well known anomalies of the F2 ionospheric layer. Performance metrics demonstrate that the model parametrized using FISM2 has better accuracy than a similarly parametrized model with F10.7, as well as than the IRI-2020 model. Skill score metrics indicate that the FISM2 based model outperforms F10.7 model at all solar activity levels. The improved accuracy of model with FISM2 over F10.7 is due to better representation of solar rotation by FISM2, and due to its performance at solar extremum. Application of singular spectrum analysis to model output reveals that solar rotation contributes to about 2%–3% of the variance in NmF2 data and FISM2 based model, while F10.7 based models overestimate the strength of solar rotation to be at 4%–7%. At solar extremum, both F10.7-based model and IRI-2020 tend to overestimate the NmF2 while FISM2 provides the most accurate prediction out of three.

Abstract Image

利用电离层观测数据和 FISM2 太阳紫外线模型建立 NmF2 的本地经验模型
利用 Lowell GIRO 数据中心的自动缩放数据和世界电离层和空间气象数据中心的人工缩放数据,为 43 个中低纬度电离层观测站建立了 F2 层峰值电子密度(NmF2)的本地经验模型。这些站点的数据覆盖范围从几年到长达六十年不等。耀斑辐照度光谱模型指数第 2 版(FISM2)和 ap3 指数用于参数化 NmF2 的太阳极紫外线(EUV)通量和地磁活动相关性。学习曲线表明,需要大约 8 年的数据覆盖来约束 NmF2 的太阳活动依赖性。本地模型的输出完全捕捉到了 F2 电离层众所周知的异常现象。性能指标表明,使用 FISM2 参数化的模型比使用 F10.7 参数化的类似模型以及 IRI-2020 模型的精度更高。技能得分指标表明,在所有太阳活动水平下,基于 FISM2 的模型都优于 F10.7 模型。与 F10.7 相比,FISM2 模型的准确性有所提高,这是因为 FISM2 更好地代表了太阳自转,而且在太阳极值时表现出色。对模型输出应用奇异谱分析显示,太阳自转约占 NmF2 数据和基于 FISM2 的模型方差的 2%-3%,而基于 F10.7 的模型则高估了太阳自转强度达 4%-7%。在太阳极值时,基于 F10.7 的模型和 IRI-2020 都倾向于高估 NmF2,而 FISM2 的预测结果在三者中最为准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信