NIR-photoactivatable DNA nanomachines for spatiotemporally controllable monitoring of microRNA-21 in living cells based on signal amplification strategy

IF 10.7 1区 生物学 Q1 BIOPHYSICS
{"title":"NIR-photoactivatable DNA nanomachines for spatiotemporally controllable monitoring of microRNA-21 in living cells based on signal amplification strategy","authors":"","doi":"10.1016/j.bios.2024.116755","DOIUrl":null,"url":null,"abstract":"<div><p>Precise and spatiotemporally controllable analysis of microRNA-21 in living cells is crucial for accurate diagnosis and effective treatment of related diseases. Herein, a near-infrared (NIR)-photoactivatable DNA nanomachine (PUCNPs-NH<sub>2</sub>/PEG-ZL-DNA) was constructed for the precise analysis and diagnosis of microRNA-21 in tumor cells. Peanut-shaped upconversion nanoparticles (PUCNPs) were employed as the carriers and activators for the intelligent DNA probe, specifically enabling the cleavage of the photocleavable linker (PC-linker) from the hairpin DNA probe (Hp-Dzy) upon exposure to 808 nm irradiation. In the presence of the target microRNA-21, the locker DNA hybridized with microRNA-21 and the DNAzymes was freed to hybridize with the looped portion of the hairpin DNA (Hp-1). Mg<sup>2+</sup> was employed as the cofactor, facilitating the precise cleavage of Hp-1, which triggered the restoration of fluorescence signals. Subsequently, DNAzymes exhibited the competency to selectively recognize and engage with additional Hp-1, and the fluorescence signals were effectively amplified by the recycling process. Consequently, the DNA nanomachine exhibited a linear response to microRNA-21 concentrations ranging from 0.5 nM to 1.0 μM, achieving a remarkable detection limit (LOD) of 1.19 nM under the optimal conditions. This strategy is realized through the integration of photocontrollable upconversion nanotechnology with the signal amplification approach, showing feasible prospects for spatiotemporally precise and highly sensitive monitoring of microRNA in tumor cells.</p></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956566324007619","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Precise and spatiotemporally controllable analysis of microRNA-21 in living cells is crucial for accurate diagnosis and effective treatment of related diseases. Herein, a near-infrared (NIR)-photoactivatable DNA nanomachine (PUCNPs-NH2/PEG-ZL-DNA) was constructed for the precise analysis and diagnosis of microRNA-21 in tumor cells. Peanut-shaped upconversion nanoparticles (PUCNPs) were employed as the carriers and activators for the intelligent DNA probe, specifically enabling the cleavage of the photocleavable linker (PC-linker) from the hairpin DNA probe (Hp-Dzy) upon exposure to 808 nm irradiation. In the presence of the target microRNA-21, the locker DNA hybridized with microRNA-21 and the DNAzymes was freed to hybridize with the looped portion of the hairpin DNA (Hp-1). Mg2+ was employed as the cofactor, facilitating the precise cleavage of Hp-1, which triggered the restoration of fluorescence signals. Subsequently, DNAzymes exhibited the competency to selectively recognize and engage with additional Hp-1, and the fluorescence signals were effectively amplified by the recycling process. Consequently, the DNA nanomachine exhibited a linear response to microRNA-21 concentrations ranging from 0.5 nM to 1.0 μM, achieving a remarkable detection limit (LOD) of 1.19 nM under the optimal conditions. This strategy is realized through the integration of photocontrollable upconversion nanotechnology with the signal amplification approach, showing feasible prospects for spatiotemporally precise and highly sensitive monitoring of microRNA in tumor cells.

基于信号放大策略的近红外光激活 DNA 纳米机械用于活细胞中 microRNA-21 的时空可控监测
对活细胞中的 microRNA-21 进行精确的时空可控分析,对于准确诊断和有效治疗相关疾病至关重要。本文构建了一种近红外(NIR)-光激活DNA纳米机器(PUCNPs-NH2/PEG-ZL-DNA),用于精确分析和诊断肿瘤细胞中的microRNA-21。该研究采用花生形上转换纳米颗粒(PUCNPs)作为智能 DNA 探针的载体和激活剂,特别是在 808 纳米波长的照射下能使发夹 DNA 探针(Hp-Dzy)上的光可裂解连接体(PC-连接体)裂解。在目标 microRNA-21 存在的情况下,锁定 DNA 与 microRNA-21 杂交,DNA 酶被释放出来与发夹 DNA(Hp-1)的环状部分杂交。Mg2+ 被用作辅助因子,促进了 Hp-1 的精确裂解,从而引发了荧光信号的恢复。随后,DNA 酶表现出选择性识别和接触额外 Hp-1 的能力,荧光信号在循环过程中得到有效放大。因此,DNA 纳米机械对 0.5 nM 至 1.0 μM 的 microRNA-21 浓度表现出线性响应,在最佳条件下达到 1.19 nM 的显著检测限(LOD)。这一策略是通过将光控上转换纳米技术与信号放大方法相结合而实现的,为时空精确、高灵敏度地监测肿瘤细胞中的 microRNA 展示了可行的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biosensors and Bioelectronics
Biosensors and Bioelectronics 工程技术-电化学
CiteScore
20.80
自引率
7.10%
发文量
1006
审稿时长
29 days
期刊介绍: Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信