Lattice matching propels customized-dimensionality 2D/3D perovskite heterojunctions for high-performance photovoltaics

IF 13.2 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yuncai Liang , Junmin Xia , Baojin Fan , Chao Liang , Fangfang Yuan , Sihui Peng , Qihang Sun , Rudai Zhao , Zhipeng Miao , Ting Zhang , He Zhu , Wenlong Liang , Yunhang Xie , Shufen Chen , Xiaotian Hu , Yiqiang Zhang , Pengwei Li , Yanlin Song
{"title":"Lattice matching propels customized-dimensionality 2D/3D perovskite heterojunctions for high-performance photovoltaics","authors":"Yuncai Liang ,&nbsp;Junmin Xia ,&nbsp;Baojin Fan ,&nbsp;Chao Liang ,&nbsp;Fangfang Yuan ,&nbsp;Sihui Peng ,&nbsp;Qihang Sun ,&nbsp;Rudai Zhao ,&nbsp;Zhipeng Miao ,&nbsp;Ting Zhang ,&nbsp;He Zhu ,&nbsp;Wenlong Liang ,&nbsp;Yunhang Xie ,&nbsp;Shufen Chen ,&nbsp;Xiaotian Hu ,&nbsp;Yiqiang Zhang ,&nbsp;Pengwei Li ,&nbsp;Yanlin Song","doi":"10.1016/j.nantod.2024.102479","DOIUrl":null,"url":null,"abstract":"<div><p>2D/3D perovskite heterojunctions typically yield mixed-phase 2D perovskites, generating multiple quantum wells that impede charge transfer, thereby limiting the potential enhancement of solar cell efficiency. Here, we successfully fabricated phase-pure 2D (n = 2)/3D perovskite heterojunctions via introducing the γ-aminobutyric acid (GABA) ligand, which minimized energetic inhomogeneity, thus favoring interfacial charge transfer through optimized energy band alignment. The ligation between the oxygen atoms in the ligand and the uncoordinated lead in the 3D perovskite triggered a structural transition from cubic to tetragonal at the 3D perovskite surface, ensuring a seamless lattice matching with the 2D perovskite (n = 2), resulting in this optimized configuration. Utilizing this innovative structural configuration, the carrier properties of 2D/3D perovskite thin films have been significantly enhanced, exhibiting diffusion lengths exceeding 1000 nm and a mobility of 3.35 cm² V⁻¹ s⁻¹. Consequently, the fabricated small-area perovskite solar cells exhibited an impressive power conversion efficiency (PCE) of 25.06 %, while the mini-modules (10 cm × 10 cm) attained a maximum PCE of 17.27 %. Furthermore, the passivation of the 2D perovskite layers, coupled with their inherent superior resistance, enabled the unencapsulated target device to maintain outstanding long-term stability, even under challenging environmental conditions of light, heat, and humidity.</p></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"59 ","pages":"Article 102479"},"PeriodicalIF":13.2000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748013224003359","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

2D/3D perovskite heterojunctions typically yield mixed-phase 2D perovskites, generating multiple quantum wells that impede charge transfer, thereby limiting the potential enhancement of solar cell efficiency. Here, we successfully fabricated phase-pure 2D (n = 2)/3D perovskite heterojunctions via introducing the γ-aminobutyric acid (GABA) ligand, which minimized energetic inhomogeneity, thus favoring interfacial charge transfer through optimized energy band alignment. The ligation between the oxygen atoms in the ligand and the uncoordinated lead in the 3D perovskite triggered a structural transition from cubic to tetragonal at the 3D perovskite surface, ensuring a seamless lattice matching with the 2D perovskite (n = 2), resulting in this optimized configuration. Utilizing this innovative structural configuration, the carrier properties of 2D/3D perovskite thin films have been significantly enhanced, exhibiting diffusion lengths exceeding 1000 nm and a mobility of 3.35 cm² V⁻¹ s⁻¹. Consequently, the fabricated small-area perovskite solar cells exhibited an impressive power conversion efficiency (PCE) of 25.06 %, while the mini-modules (10 cm × 10 cm) attained a maximum PCE of 17.27 %. Furthermore, the passivation of the 2D perovskite layers, coupled with their inherent superior resistance, enabled the unencapsulated target device to maintain outstanding long-term stability, even under challenging environmental conditions of light, heat, and humidity.

晶格匹配推动定制维度的二维/三维包晶异质结实现高性能光伏技术
2D/3D 包晶异质结通常会产生混相 2D 包晶,生成多个量子阱,阻碍电荷转移,从而限制了太阳能电池效率的潜在提高。在这里,我们通过引入γ-氨基丁酸(GABA)配体,成功制备了相纯的二维(n = 2)/三维包晶异质结,最大程度地减少了能量不均匀性,从而通过优化能带排列有利于界面电荷转移。配体中的氧原子与三维包晶中未配位的铅之间的配位引发了三维包晶表面从立方到四方的结构转变,确保了与二维包晶(n = 2)的无缝晶格匹配,从而形成了这种优化配置。利用这种创新的结构配置,2D/3D 包晶体薄膜的载流子特性显著增强,扩散长度超过 1000 nm,迁移率达到 3.35 cm² V-¹ s-¹。因此,制造出的小面积过氧化物太阳能电池的功率转换效率(PCE)达到了令人印象深刻的 25.06%,而迷你模块(10 厘米 × 10 厘米)的最大 PCE 为 17.27%。此外,二维过氧化物层的钝化,加上其固有的优异电阻,使未封装的目标器件即使在光、热和湿度等挑战性环境条件下也能保持出色的长期稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Today
Nano Today 工程技术-材料科学:综合
CiteScore
21.50
自引率
3.40%
发文量
305
审稿时长
40 days
期刊介绍: Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信