{"title":"Polar-localized OsLTPG22 regulates rice leaf cuticle deposition and drought response","authors":"Zhongyuan Chang , Minzhang Zhao , Baoxiang Qin , Lilan Hong","doi":"10.1016/j.stress.2024.100586","DOIUrl":null,"url":null,"abstract":"<div><p>The cuticle serves as a crucial protective barrier for plant survival, and recent studies have highlighted the essential roles of nonspecific lipid transfer proteins (nsLTPs) in cuticle formation. However, the specific function of nsLTPs in the rice leaf cuticle remains unclear. In this study, we functionally characterized OsLTPG22, a G-type nsLTP with a signal peptide (SP) domain and a glycosylphosphatidylinositol (GPI) anchor region. Mutation in <em>OsLTPG22</em> led to a reduction in cuticular wax abundance, increased leaf epidermal permeability, and higher drought sensitivity in seedlings. <em>OsLTPG22</em> was widely expressed in various tissues and exhibited distinct polar localization to the aerial surface of epidermal cells in expanding leaves. OsLTPG22 binds lipids and localizes to the plasma membrane. Protein truncation experiments demonstrated that OsLTPG22’s polar localization was regulated by the SP domain, while both the SP domain and GPI anchor region regulated OsLTPG22’s plasma membrane localization. This work provides genetic and cytological evidence for OsLTPG22’s role in leaf cuticle formation and drought response, enhancing our understanding of nsLTP function and offering insights for breeding drought-resistant crops.</p></div>","PeriodicalId":34736,"journal":{"name":"Plant Stress","volume":"14 ","pages":"Article 100586"},"PeriodicalIF":6.8000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667064X24002392/pdfft?md5=208e00d272eea23bf93ba8505b98fb3e&pid=1-s2.0-S2667064X24002392-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Stress","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667064X24002392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The cuticle serves as a crucial protective barrier for plant survival, and recent studies have highlighted the essential roles of nonspecific lipid transfer proteins (nsLTPs) in cuticle formation. However, the specific function of nsLTPs in the rice leaf cuticle remains unclear. In this study, we functionally characterized OsLTPG22, a G-type nsLTP with a signal peptide (SP) domain and a glycosylphosphatidylinositol (GPI) anchor region. Mutation in OsLTPG22 led to a reduction in cuticular wax abundance, increased leaf epidermal permeability, and higher drought sensitivity in seedlings. OsLTPG22 was widely expressed in various tissues and exhibited distinct polar localization to the aerial surface of epidermal cells in expanding leaves. OsLTPG22 binds lipids and localizes to the plasma membrane. Protein truncation experiments demonstrated that OsLTPG22’s polar localization was regulated by the SP domain, while both the SP domain and GPI anchor region regulated OsLTPG22’s plasma membrane localization. This work provides genetic and cytological evidence for OsLTPG22’s role in leaf cuticle formation and drought response, enhancing our understanding of nsLTP function and offering insights for breeding drought-resistant crops.
期刊介绍:
The journal Plant Stress deals with plant (or other photoautotrophs, such as algae, cyanobacteria and lichens) responses to abiotic and biotic stress factors that can result in limited growth and productivity. Such responses can be analyzed and described at a physiological, biochemical and molecular level. Experimental approaches/technologies aiming to improve growth and productivity with a potential for downstream validation under stress conditions will also be considered. Both fundamental and applied research manuscripts are welcome, provided that clear mechanistic hypotheses are made and descriptive approaches are avoided. In addition, high-quality review articles will also be considered, provided they follow a critical approach and stimulate thought for future research avenues.
Plant Stress welcomes high-quality manuscripts related (but not limited) to interactions between plants and:
Lack of water (drought) and excess (flooding),
Salinity stress,
Elevated temperature and/or low temperature (chilling and freezing),
Hypoxia and/or anoxia,
Mineral nutrient excess and/or deficiency,
Heavy metals and/or metalloids,
Plant priming (chemical, biological, physiological, nanomaterial, biostimulant) approaches for improved stress protection,
Viral, phytoplasma, bacterial and fungal plant-pathogen interactions.
The journal welcomes basic and applied research articles, as well as review articles and short communications. All submitted manuscripts will be subject to a thorough peer-reviewing process.