Jointly stationary solutions of periodic Burgers flow

IF 1.7 2区 数学 Q1 MATHEMATICS
Alexander Dunlap , Yu Gu
{"title":"Jointly stationary solutions of periodic Burgers flow","authors":"Alexander Dunlap ,&nbsp;Yu Gu","doi":"10.1016/j.jfa.2024.110656","DOIUrl":null,"url":null,"abstract":"<div><p>For the one dimensional Burgers equation with a random and periodic forcing, it is well-known that there exists a family of invariant measures, each corresponding to a different average velocity. In this paper, we consider the coupled invariant measures and study how they change as the velocity parameter varies. We show that the derivative of the invariant measure with respect to the velocity parameter exists, and it can be interpreted as the steady state of a diffusion advected by the Burgers flow.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003446","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For the one dimensional Burgers equation with a random and periodic forcing, it is well-known that there exists a family of invariant measures, each corresponding to a different average velocity. In this paper, we consider the coupled invariant measures and study how they change as the velocity parameter varies. We show that the derivative of the invariant measure with respect to the velocity parameter exists, and it can be interpreted as the steady state of a diffusion advected by the Burgers flow.

周期性布尔格斯流的联合静止解
众所周知,对于具有随机和周期作用力的一维伯格斯方程,存在一系列不变量,每个不变量对应不同的平均速度。在本文中,我们将考虑耦合不变度量,并研究它们如何随着速度参数的变化而变化。我们的研究表明,存在不变度量相对于速度参数的导数,它可以解释为布尔格斯流平流扩散的稳定状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信