Sharp maximal function estimates for linear and multilinear pseudo-differential operators

IF 1.7 2区 数学 Q1 MATHEMATICS
Bae Jun Park , Naohito Tomita
{"title":"Sharp maximal function estimates for linear and multilinear pseudo-differential operators","authors":"Bae Jun Park ,&nbsp;Naohito Tomita","doi":"10.1016/j.jfa.2024.110661","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study pointwise estimates for linear and multilinear pseudo-differential operators with exotic symbols in terms of the Fefferman-Stein sharp maximal function and Hardy-Littlewood type maximal function. Especially in the multilinear case, we use a multi-sublinear variant of the classical Hardy-Littlewood maximal function introduced by Lerner, Ombrosi, Pérez, Torres, and Trujillo-González <span><span>[16]</span></span>, which provides more elaborate and natural weighted estimates in the multilinear setting.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"287 12","pages":"Article 110661"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003495","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study pointwise estimates for linear and multilinear pseudo-differential operators with exotic symbols in terms of the Fefferman-Stein sharp maximal function and Hardy-Littlewood type maximal function. Especially in the multilinear case, we use a multi-sublinear variant of the classical Hardy-Littlewood maximal function introduced by Lerner, Ombrosi, Pérez, Torres, and Trujillo-González [16], which provides more elaborate and natural weighted estimates in the multilinear setting.

线性和多线性伪微分算子的尖锐最大函数估计值
在本文中,我们用费弗曼-斯坦尖锐最大函数和哈代-利特尔伍德类型最大函数研究了具有奇异符号的线性和多线性伪微分算子的点估计。特别是在多线性情况下,我们使用了由 Lerner、Ombrosi、Pérez、Torres 和 Trujillo-González [16] 引入的经典 Hardy-Littlewood 最大函数的多子线性变体,它在多线性设置中提供了更精细、更自然的加权估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信