Small perturbations of polytopes

IF 1.7 2区 数学 Q1 MATHEMATICS
Christian Kipp
{"title":"Small perturbations of polytopes","authors":"Christian Kipp","doi":"10.1016/j.jfa.2024.110644","DOIUrl":null,"url":null,"abstract":"<div><p>Motivated by first-order conditions for extremal bodies of geometric functionals, we study a functional analytic notion of infinitesimal perturbations of convex bodies and give a full characterization of the set of realizable perturbations if the perturbed body is a polytope. As an application, we derive a necessary condition for polytopal maximizers of the isotropic constant.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S002212362400332X/pdfft?md5=e462643d71502f41002932b5ab067bea&pid=1-s2.0-S002212362400332X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002212362400332X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by first-order conditions for extremal bodies of geometric functionals, we study a functional analytic notion of infinitesimal perturbations of convex bodies and give a full characterization of the set of realizable perturbations if the perturbed body is a polytope. As an application, we derive a necessary condition for polytopal maximizers of the isotropic constant.

多边形的小扰动
受几何函数极值体的一阶条件的启发,我们研究了凸体无穷小扰动的函数解析概念,并给出了如果被扰动体是多面体,可实现扰动集合的完整特征。作为应用,我们推导出了等向常数多面体最大化的必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信