Neural network based rYld2004 anisotropic hardening model under non-associated flow rule for BCC and FCC metals

IF 3.4 3区 工程技术 Q1 MECHANICS
Songchen Wang, Hongchun Shang, Can Zhou, Miao Han, Yanshan Lou
{"title":"Neural network based rYld2004 anisotropic hardening model under non-associated flow rule for BCC and FCC metals","authors":"Songchen Wang,&nbsp;Hongchun Shang,&nbsp;Can Zhou,&nbsp;Miao Han,&nbsp;Yanshan Lou","doi":"10.1016/j.ijsolstr.2024.113052","DOIUrl":null,"url":null,"abstract":"<div><p>This paper extends the reduced Yld2004 (rYld2004) function to present the anisotropic hardening behavior for body-centered cubic and face-centered cubic metals under the proportional loading conditions based on neural network. The parameters of the rYld2004 anisotropic hardening model (AH_rYld2004) are determined by the uniaxial tensile yield stresses along <span><math><msup><mrow><mtext>0</mtext></mrow><mo>°</mo></msup></math></span>, <span><math><msup><mrow><mtext>15</mtext></mrow><mo>°</mo></msup></math></span>, <span><math><msup><mrow><mtext>30</mtext></mrow><mo>°</mo></msup></math></span>, <span><math><msup><mrow><mtext>45</mtext></mrow><mo>°</mo></msup></math></span>, <span><math><msup><mrow><mtext>60</mtext></mrow><mo>°</mo></msup></math></span>, <span><math><msup><mrow><mtext>75</mtext></mrow><mo>°</mo></msup></math></span> and <span><math><msup><mrow><mtext>90</mtext></mrow><mo>°</mo></msup></math></span> from the rolling direction as well as equibiaxial tension. The evolution of anisotropic parameters are described by the back propagation neural network optimized by ant colony optimization algorithm. The predicted data by AH_rYld2004 and some common anisotropic models are compared with the experimental results to verify the precision of the AH_rYld2004 in characterizing anisotropic hardening. The comparison proves that the AH_rYld2004 precisely characterize the anisotropic evolution with increasing plastic deformation for AA 3003-O and QP980. Simultaneously, the AH_rYld2004 function based on neural network is used to accurately simulate of circular cup deep drawing for AA 3003-O and uniaxial tension for QP980. The results indicate that the AH_rYld2004 model is capable to accurately represent the plastic anisotropic evolution for uniaxial tension along seven loading directions and equibiaxial tension.</p></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":"305 ","pages":"Article 113052"},"PeriodicalIF":3.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020768324004116","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper extends the reduced Yld2004 (rYld2004) function to present the anisotropic hardening behavior for body-centered cubic and face-centered cubic metals under the proportional loading conditions based on neural network. The parameters of the rYld2004 anisotropic hardening model (AH_rYld2004) are determined by the uniaxial tensile yield stresses along 0°, 15°, 30°, 45°, 60°, 75° and 90° from the rolling direction as well as equibiaxial tension. The evolution of anisotropic parameters are described by the back propagation neural network optimized by ant colony optimization algorithm. The predicted data by AH_rYld2004 and some common anisotropic models are compared with the experimental results to verify the precision of the AH_rYld2004 in characterizing anisotropic hardening. The comparison proves that the AH_rYld2004 precisely characterize the anisotropic evolution with increasing plastic deformation for AA 3003-O and QP980. Simultaneously, the AH_rYld2004 function based on neural network is used to accurately simulate of circular cup deep drawing for AA 3003-O and uniaxial tension for QP980. The results indicate that the AH_rYld2004 model is capable to accurately represent the plastic anisotropic evolution for uniaxial tension along seven loading directions and equibiaxial tension.

Abstract Image

基于神经网络的 rYld2004 各向异性硬化模型,适用于 BCC 和 FCC 金属的非关联流动规则
本文扩展了简化 Yld2004(rYld2004)函数,在神经网络的基础上提出了体心立方和面心立方金属在比例加载条件下的各向异性硬化行为。rYld2004 各向异性硬化模型 (AH_rYld2004) 的参数由与轧制方向成 0°、15°、30°、45°、60°、75° 和 90°的单轴拉伸屈服应力以及等轴拉伸决定。各向异性参数的演变是通过蚁群优化算法优化的反向传播神经网络来描述的。将 AH_rYld2004 和一些常见各向异性模型的预测数据与实验结果进行比较,以验证 AH_rYld2004 在表征各向异性硬化方面的精确性。比较结果证明,AH_rYld2004 能精确表征 AA 3003-O 和 QP980 随塑性变形增加而发生的各向异性演变。同时,使用基于神经网络的 AH_rYld2004 函数精确模拟了 AA 3003-O 的圆杯深冲和 QP980 的单轴拉伸。结果表明,AH_rYld2004 模型能够准确表示七个加载方向的单轴拉伸和等轴拉伸的塑性各向异性演变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
8.30%
发文量
405
审稿时长
70 days
期刊介绍: The International Journal of Solids and Structures has as its objective the publication and dissemination of original research in Mechanics of Solids and Structures as a field of Applied Science and Engineering. It fosters thus the exchange of ideas among workers in different parts of the world and also among workers who emphasize different aspects of the foundations and applications of the field. Standing as it does at the cross-roads of Materials Science, Life Sciences, Mathematics, Physics and Engineering Design, the Mechanics of Solids and Structures is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from the more classical problems of structural analysis to mechanics of solids continually interacting with other media and including fracture, flow, wave propagation, heat transfer, thermal effects in solids, optimum design methods, model analysis, structural topology and numerical techniques. Interest extends to both inorganic and organic solids and structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信