{"title":"A multi-step auxetic metamaterial with instability regulation","authors":"","doi":"10.1016/j.ijsolstr.2024.113040","DOIUrl":null,"url":null,"abstract":"<div><p>A stable deformation mode is highly desired for mechanical metamaterials, especially when coupled with a negative Poisson’s ratio. However, such metamaterials often face challenges in terms of scalability toward large deformation or strain. In response, we propose a multi-step hierarchical auxetic metamaterial design paradigm, incorporating a series of incrementally scaled-down structures with same scale factor <span><math><mi>α</mi></math></span> into a re-entrant framework. This design enables instability regulation and multi-step deformation capabilities while preserving auxetic behavior, even under significant strain. Such multi-step metamaterials exhibit excellent properties, including tailored multi-phase compression modulus and strength, along with an enhanced energy absorption capacity that is as large as 2.1 times that of the original auxetic metamaterial. Experiments and simulations demonstrate that the deformation mechanism and compression response of the proposed multi-step auxetics are strongly influenced by the reduction factor and the order of the inner structure. A particularly intriguing observation is that the incorporation of embedded microstructures can restore stable deformation, even in the presence of significant initial instability, particularly with a reduction factor of <span><math><mrow><mn>1</mn><mo>/</mo><mn>5</mn></mrow></math></span>. At high relative density, its specific energy absorption stands out favorably compared to other configurations, highlighting the success of the recoverable buckling mechanism. This work paves the way for designing multi-step mechanical metamaterials for use in impact resistance and body protection.</p></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020768324003998","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
A stable deformation mode is highly desired for mechanical metamaterials, especially when coupled with a negative Poisson’s ratio. However, such metamaterials often face challenges in terms of scalability toward large deformation or strain. In response, we propose a multi-step hierarchical auxetic metamaterial design paradigm, incorporating a series of incrementally scaled-down structures with same scale factor into a re-entrant framework. This design enables instability regulation and multi-step deformation capabilities while preserving auxetic behavior, even under significant strain. Such multi-step metamaterials exhibit excellent properties, including tailored multi-phase compression modulus and strength, along with an enhanced energy absorption capacity that is as large as 2.1 times that of the original auxetic metamaterial. Experiments and simulations demonstrate that the deformation mechanism and compression response of the proposed multi-step auxetics are strongly influenced by the reduction factor and the order of the inner structure. A particularly intriguing observation is that the incorporation of embedded microstructures can restore stable deformation, even in the presence of significant initial instability, particularly with a reduction factor of . At high relative density, its specific energy absorption stands out favorably compared to other configurations, highlighting the success of the recoverable buckling mechanism. This work paves the way for designing multi-step mechanical metamaterials for use in impact resistance and body protection.
期刊介绍:
The International Journal of Solids and Structures has as its objective the publication and dissemination of original research in Mechanics of Solids and Structures as a field of Applied Science and Engineering. It fosters thus the exchange of ideas among workers in different parts of the world and also among workers who emphasize different aspects of the foundations and applications of the field.
Standing as it does at the cross-roads of Materials Science, Life Sciences, Mathematics, Physics and Engineering Design, the Mechanics of Solids and Structures is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from the more classical problems of structural analysis to mechanics of solids continually interacting with other media and including fracture, flow, wave propagation, heat transfer, thermal effects in solids, optimum design methods, model analysis, structural topology and numerical techniques. Interest extends to both inorganic and organic solids and structures.