{"title":"What can protein circuit design learn from DNA nanotechnology?","authors":"","doi":"10.1016/j.cobme.2024.100556","DOIUrl":null,"url":null,"abstract":"<div><p>Protein circuit design is still in its infancy in terms of programmability. DNA nanotechnology, however, excels at this property and its community has created a myriad of circuits and assemblies following modular hierarchical design rules. In this mini-review, we reason that the rationales behind DNA nanotechnology can nurture protein circuit design, and the unique versatility orchestrated by groups of proteins can be further exploited to program cells. Community efforts to develop databases and design algorithms for standardizing and customizing protein modules could bring the programmability of protein circuits to a level comparable to DNA nanotechnology, ultimately empowering modular hierarchical protein circuit design.</p></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468451124000369/pdfft?md5=cf29dc67463354b598e20a7ff8da02c1&pid=1-s2.0-S2468451124000369-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468451124000369","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Protein circuit design is still in its infancy in terms of programmability. DNA nanotechnology, however, excels at this property and its community has created a myriad of circuits and assemblies following modular hierarchical design rules. In this mini-review, we reason that the rationales behind DNA nanotechnology can nurture protein circuit design, and the unique versatility orchestrated by groups of proteins can be further exploited to program cells. Community efforts to develop databases and design algorithms for standardizing and customizing protein modules could bring the programmability of protein circuits to a level comparable to DNA nanotechnology, ultimately empowering modular hierarchical protein circuit design.
就可编程性而言,蛋白质电路设计仍处于起步阶段。然而,DNA 纳米技术在这一特性上表现出色,其群体已经按照模块化分层设计规则创造出了无数电路和组件。在这篇小型综述中,我们认为 DNA 纳米技术背后的原理可以促进蛋白质电路设计,而蛋白质组所协调的独特多功能性可以进一步用于细胞编程。为标准化和定制化蛋白质模块开发数据库和设计算法的各界努力,可将蛋白质电路的可编程性提高到与 DNA 纳米技术相当的水平,最终增强模块化分层蛋白质电路设计的能力。